

Friedel Oscillations in the reduced Hartree-Fock model

Jack Thomas. Joint work with Antoine Levitt.

Abstract: When a defect potential is placed in a material, the material rearranges and the total potential at long-range is screened by the electrons. In the finite temperature reduced Hartree–Fock model, small defects are completely screened [2]; the total change in potential decays exponentially. On the other hand, in metals at zero temperature, the presence of the Fermi-surface introduces non-analytic behaviour into the independent-particle susceptibility χ_0 , leading to what are known as Friedel oscillations; the total potential oscillates and decays algebraically, with exponent depending on the dimensionality.

Introduction

Suppose we have a lattice $\mathcal{R} \subset \mathbb{R}^d$ and an associated unit cell Γ , we let $L^2_{\mathrm{per}} \coloneqq \{f \in L^2(\Gamma) \colon f \text{ is } \mathcal{R}\text{-periodic}\}$. For a fixed periodic potential $W_{\mathrm{per}} \in L^2_{\mathrm{per}}$, associated Fermi level ε_{F} , consider the response to an effective potential V:

$$\rho_{V}(x) = F_{\varepsilon_{F}}(-\Delta + W_{per} + V)(x, x)$$

= $\rho_{0}(x) + \chi_{0}V(x) + \cdots$ (1)

where \bullet $F_{\varepsilon_{\mathrm{F}}}(x) \coloneqq \left(1 + e^{\frac{x - \varepsilon_{\mathrm{F}}}{k_{\mathrm{B}}T}}\right)^{-1}$ is the Fermi–Dirac distribution with temperature $T \ge 0$ and

• χ_0 is the independent particle susceptibility operator.

 $V = V_{\text{def}}$ Linear model: Reduced Hartree–Fock (rHF): $V = V_{\text{def}} + (\rho_V - \rho_0) \star |\cdot|^{-1}$,

(2)

Finite temperature: • $\chi_0 V$ decays "as quickly as" V,

• rHF: small defects are completely screened; $V(V_{\rm def})$ in (2) decays exponentially [2].

Zero temperature: • Fermi surface leads to fundamentally different behaviour,

• $\chi_0 V$ oscillates and decays algebraically with rate depending on the Fermi surface.

Decay of the Green's Function

Non-interacting response given in terms of the Green's function G_V^E :

$$\rho_V(x) = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\varepsilon_{\mathrm{F}}} G_V^E(x, x) \mathrm{d}E$$
(3)

where

$$G_{V}^{E} := \lim_{\eta \downarrow 0} (E + i\eta - H_{0} - V)^{-1}$$

$$= G_{0}^{E} + G_{0}^{E} V G_{0}^{E} + G_{0}^{E} V G_{0}^{E} + G_{0}^{E} V G_{0}^{E} V G_{0}^{E} + \cdots .$$
(Dyson)

In particular, we have

$$\rho_V(x) = \rho_0(x) + \chi_0 V(x) + \dots + \chi_0^{(N)}[V](x) + \dots$$
 (4)

$$\chi_0(x,y) = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\varepsilon_{\mathrm{F}}} G_0^E(x,y) G_0^E(y,x) dE.$$
 (5)

Therefore, the off-diagonal decay of G_0^E leads to corresponding rates of decay for χ_0 and $\rho_V - \rho_0$.

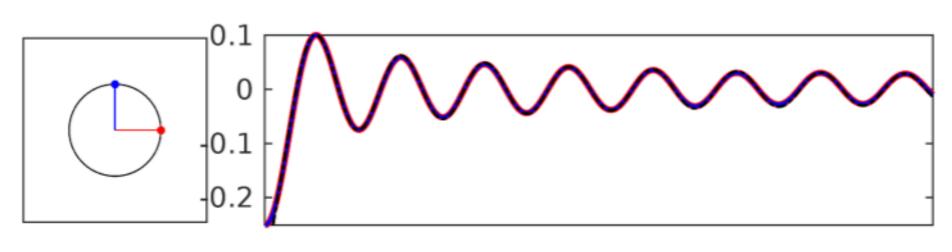
Notation: H_0 is Bloch diagonal with eigenpairs: ε_{nk} , $\psi_{nk}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{nk}(\mathbf{r})$ for $\mathbf{k} \in \mathcal{B}$, $[u_{nk} \text{ is } \mathcal{R}\text{-periodic}]$ $S(E) = \bigcup_n S_n(E), S_n(E) := \{ k \in \mathcal{B} : \varepsilon_{nk} = E \}.$ $[S(\varepsilon_{\mathrm{F}}) = \mathsf{Fermi} \; \mathsf{surface}]$ Fix $x, y \in \mathbb{R}^d$, define $\underline{R} \coloneqq R \hat{\underline{R}} \coloneqq x - y$ where $R \ge 0, |\hat{\underline{R}}| = 1$.

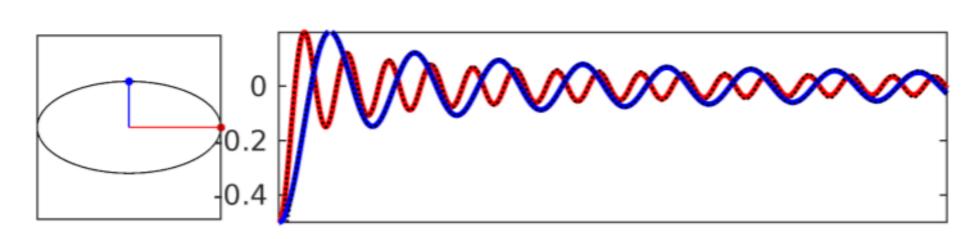
Proposition 1: Decay of the Green's function. Suppose that, at points $k \in S(E)$ with normal in the direction $\underline{\hat{R}}$, the surface S(E) has non-zero Gauss curvature. Then,

$$G_0^{E}(x,y) = R^{-\frac{d-1}{2}} \sum_{\substack{k \in S_n(E):\\ \frac{\nabla \varepsilon_{nk}}{|\nabla \varepsilon_{nk}|} \cdot \underline{\hat{R}} = 1}} c_k e^{ik \cdot \underline{R}} + O(R^{-\frac{d+1}{2}})$$
(6)

as $R = |x - y| \to \infty$, where $c_k := C_d \frac{u_{nk}(x)u_{nk}^*(y)}{|\nabla \varepsilon_{nk}|} \frac{e^{-i\frac{\pi}{4}\sum_{j=1}^{d-1}\operatorname{sgn}\kappa_{kj}}}{\prod_{i=1}^{d-1}\sqrt{|\kappa_{ki}|}}$ and $\{\kappa_{kj}\}$ are the principal curvatures of S(E) at k.

Remark: If S(E) has κ non-zero principal curvatures, we have $|G_0^E(x,y)| \lesssim R^{-\frac{\kappa}{2}}$. The exact asymptotic behaviour is more complicated: e.g. [1].





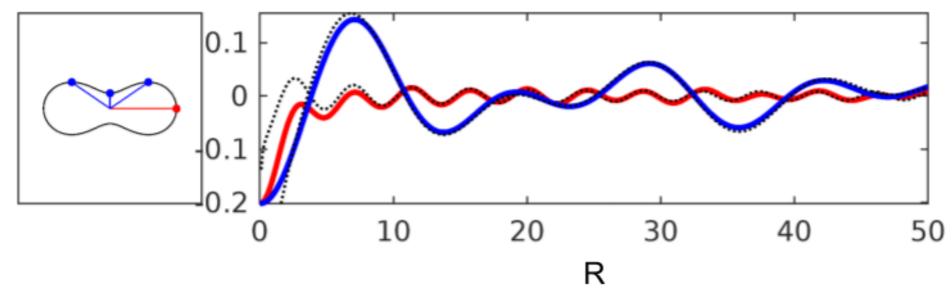


Figure 1: Decay of the Green's function for three model Fermi surfaces for d=2. $\underline{R}_{\times}:=(R,0), \underline{R}_{\vee}:=(0,R)$. Left: plots of the Fermi surface, together with points k in (6) for R_x (red) and R_y (blue). Right: Im $G_0^E(\underline{R}, 0)$ and the asymptotic behaviour from Proposition 1 (dotted) for \underline{R}_x (red) and \underline{R}_v (blue).

Sketch of the Proof. To simplify the proof, take $H_0 := \varepsilon(-i\nabla)$ (in place of $H_0 = -\Delta + W_{per}$). Then,

$$G_0^{E}(x,y) = \lim_{n\downarrow 0} \oint_{\mathcal{B}} \frac{e^{i\mathbf{k}\cdot\underline{R}}}{E + in - \varepsilon(\mathbf{k})} d\mathbf{k} = -\frac{1}{|\mathcal{B}|} \left[\left(\text{p.v.} \frac{1}{\varepsilon} \right) I(E + \cdot) + i\pi I(E) \right]$$
 (7)

where $I(E) := \int_{S(E)} \frac{e^{i\mathbf{k}\cdot\mathbf{R}}}{|\nabla\varepsilon(\mathbf{k})|} d\mathbf{k}$. We then apply stationary phase results [6] to the oscillatory integral I.

Independent Particle Susceptibility

Recall: For $x, y \in \mathbb{R}^d$, define $\underline{R} := R\hat{\underline{R}} := x - y$ where $R \ge 0, |\hat{\underline{R}}| = 1$.

Using Proposition 1, we are able obtain the following asymptotic behaviour for χ_0 :

Proposition 2. Suppose that, at points $k \in S(\varepsilon_F)$ with normal in the direction \hat{R} , the Fermi surface $S(\varepsilon_F)$ has non-zero Gauss curvature. Then,

$$\chi_{0}(x,y) = R^{-d} \operatorname{Im} \sum_{\substack{\mathbf{k}_{+}, \mathbf{k}_{-} \in S(\varepsilon_{F}): \\ \nabla \varepsilon_{\mathbf{k}_{+}} \\ |\nabla \varepsilon_{\mathbf{k}_{+}}|}} c_{\mathbf{k}_{+}, \mathbf{k}_{-}} e^{i(\mathbf{k}_{+} - \mathbf{k}_{-}) \cdot \underline{R}} + O(R^{-(d+1)})$$
(

as $R = |x - y| \to \infty$, where $c_{k_+k_-} \coloneqq \frac{i}{\pi} \frac{|\nabla \varepsilon_{k_+}| |\nabla \varepsilon_{k_-}|}{|\nabla \varepsilon_{k_+}| + |\nabla \varepsilon_{k_-}|} c_{k_+} c_{k_-}$.

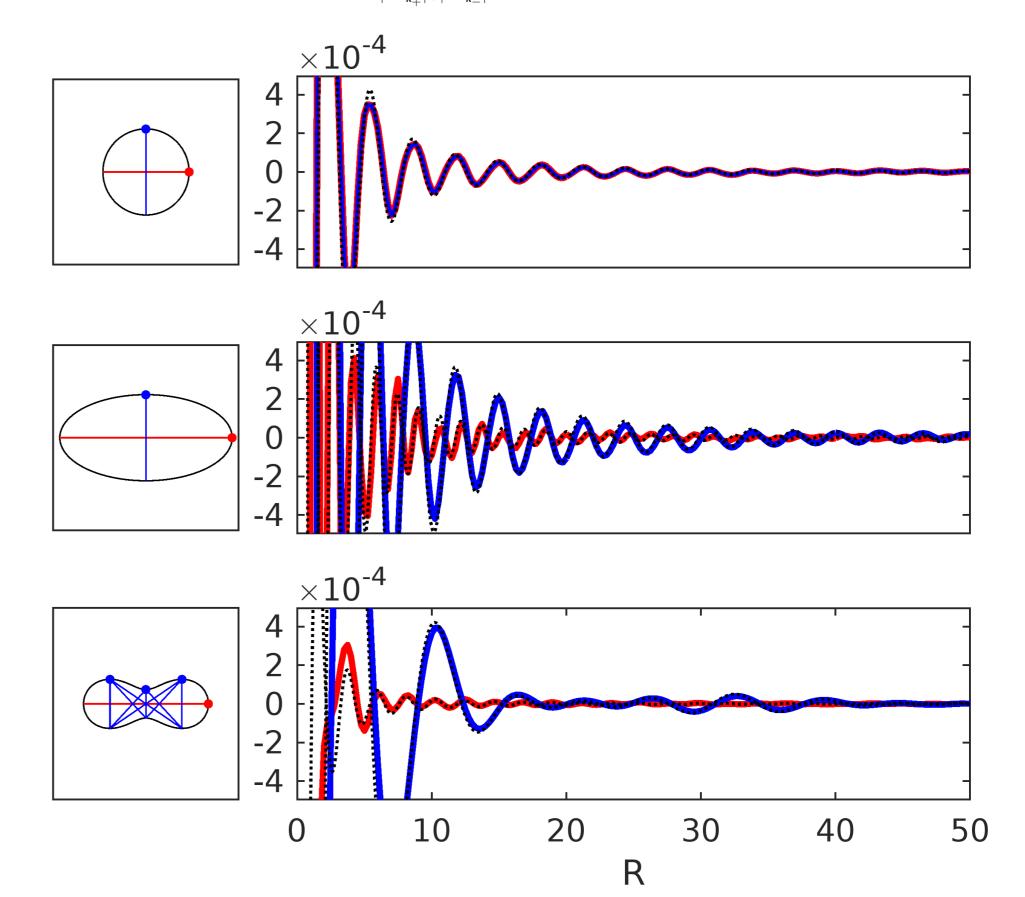


Figure 1: Decay of $\chi_0(x,y)$ for the three model Fermi surfaces from Figure 1, $\underline{R}_x := (R,0), \underline{R}_y := (0,R)$. Left: plots of the Fermi surface, together with nesting vectors $k_+ - k_-$ as in (8) for \underline{R}_{x} (red) and \underline{R}_{y} (blue). Right: $\chi_0(x,y)$ and the asymptotic behaviour from Proposition 2 (dotted) for \underline{R}_x (red) and \underline{R}_v (blue).

Sketch of the Proof. Again, we simplify notation by considering $H = \varepsilon(-i\nabla)$:

$$\chi_0(x,y) = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\varepsilon_{\mathrm{F}}} G_0^E(x,y) G_0^E(y,x) \mathrm{d}E \sim R^{-(d-1)} \int_{-\infty}^{\varepsilon_{\mathrm{F}}} \sum_{\mathbf{k}+\mathbf{k}} c_{\mathbf{k}_+} c_{\mathbf{k}_-} \mathrm{e}^{i(\mathbf{k}_+ - \mathbf{k}_-) \cdot \underline{R}} \mathrm{d}E$$

where $E \mapsto \mathbf{k}_{\pm}(E)$ are smooth with $\frac{\nabla \varepsilon(\mathbf{k}_{\pm})}{|\nabla \varepsilon(\mathbf{k}_{\pm})|} \cdot \hat{\mathbf{R}} = \pm 1$. Moreover, $\frac{\mathrm{d}}{\mathrm{d}E} \left(\pm \mathbf{k}_{\pm} \cdot \mathbf{R} \right) = |\nabla \varepsilon(\mathbf{k}_{\pm})|^{-1}R$. Therefore, one may use a partition of unity on $(-\infty, \varepsilon_F]$ and integration by parts to conclude.

Higher Order Response

We also obtain the asymptotic behaviour of the higher order response $\chi_0^N[V](x)$ as in (4), and thus we obtain [3]: **Theorem 3.** Suppose that $S(\varepsilon_F)$ has non-zero Gauss curvature and $V(x) \lesssim |x|^{-\alpha}$ for some $\alpha > 0$. Then, if $||V||_{L^{\infty}}$ sufficiently small, (4) converges and

$$|\rho_V(x) - \rho_0(x)| \lesssim |x|^{-\min\{\alpha, d\}}. \tag{10}$$

Sketch of the Proof. We write

$$\chi_0^{(N)}[V](x) = -\frac{1}{\pi} \int_{(\mathbb{R}^d)^N} \left[\operatorname{Im} \int_{-\infty}^{\varepsilon_{\mathrm{F}}} G_0^E(x, y_1) G_0^E(y_1, y_2) \cdots G_0^E(y_N, x) dE \right] V(y_1) V(y_2) \cdots V(y_N) d\underline{y}, \tag{11}$$

use the asymptotic behaviour of G_0^E from Proposition 1, and integrate over $(-\infty, \varepsilon_F]$ as in Proposition 2.

Conclusions & Remarks

- At finite temperature, $\rho_V \rho_0$ decays as quickly as V, and $\rho_V \rho_0 \chi_0 V$ decays faster than V. This is a key fact that allows one to apply a fixed point argument to (2).
- At zero temperature, the situation is very different: We have shown that the response to an effective potential decays at most algebraically with rate depending on the dimension and Fermi surface,
- We have been unable thus far to extend the analysis to the nonlinear model (2).

Remarks:

• Under the same assumptions as Proposition 2, the density matrix $\rho_0(x,y)$ satisfies

$$\rho_0(x,y) = |x-y|^{-\frac{d+1}{2}} \operatorname{Im} \sum \widetilde{c_k} e^{ik \cdot (x-y)} + O(|x-y|^{-\frac{d+3}{2}})$$

as $|x-y| \to \infty$, where the summation is over the same set as in (6) and $\widetilde{c_k} := \frac{i}{\pi} |\nabla \varepsilon_k| c_k$.

• Free electron gas: the decay of χ_0 results from the non-analytic behaviour of the Lindhard function [4, 5].

References

- Michael Greenblatt. "Resolution of singularities, asymptotic expansions of integrals and related phenomena". In: Journal d'Analyse Mathématique 111.1 (May 2010), pp. 221-245.
- Antoine Levitt. "Screening in the Finite-Temperature Reduced Hartree-Fock Model". In: Archive for Rational Mechanics and Analysis 238.2 (2020), pp. 901-927.
- Antoine Levitt and Jack Thomas. Locality in the reduced Hartree-Fock model. Unpublished manuscript.
- Bogdan Mihaila. Lindhard function of a d-dimensional Fermi gas. 2011. eprint: arXiv:1111.5337.
- George E. Simion and Gabriele F. Giuliani. "Friedel oscillations in a Fermi liquid". In: Physical Review B 72.4 (July 2005).
- Elias M. Stein. Harmonic Analysis. Princeton University Press, Dec. 1993.