Friedel Oscillations
iIn the reduced Hartree—Fock model
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Abstract: When a defect potential is placed in a material, the material rearranges and the total potential at
long-range is screened by the electrons. In the finite temperature reduced Hartree—Fock model, small defects are
completely screened [3]; the total change in potential decays exponentially. On the other hand, in metals at zero
temperature, the presence of the Fermi-surface introduces non-analytic behaviour into the independent-particle
susceptibility o, leading to what are known as Friedel oscillations; the total potential oscillates and decays
algebraically, with exponent depending on the dimensionality.

Introduction

Suppose we have a lattice R C RY and an associated unit cell ', we let [2

per — {f € L?(T): f is R-periodic}.
For a fixed periodic potential W, € Lger associated Fermi level e, consider the response to an effective
potential V:

pu(x) = Fop(— A+ Woer + V) (x, x)
— o) + XoVix) + -

o
where o F_ (x) = (1 +e kBT) " is the Fermi-Dirac distribution with temperature T > 0 and
® Yo is the independent particle susceptibility operator.

Linear model: V = Ve,
Reduced Hartree-Fock (rHF): V = Vet + (pv — po) x| - |71, (2)

Finite temperature: e YoV decays “as quickly as” V,

e rHF: small defects are completely screened; V/(Vgef) in (2) decays exponentially [3].

Zero temperature: e Fermi surface leads to fundamentally different behaviour,

e YoV oscillates and decays algebraically with rate depending on the Fermi surface.

Decay of the Green’s Function

Non-interacting response given in terms of the Green's function G;:

L[
ou(x) = — 2 Im / GE(x. x)dE

™ —0o0

where
Gy = lim (E + in — Ho - V)™
= Gf + Gy VG + GEVGEVGE + GEVGEVGEVGE +
In particular, we have
X V1) +
y)Go (v, x)dE.

pv(x) = po(x) + xoV(x) + -
Xo(x,y) = 1 Im/ G(f(x,

T —0oQ0

Therefore, the off-diagonal decay of G¢ leads to corresponding rates of decay for yq and py — po.

Notation: Hy is Bloch diagonal with eigenpairs: €4, ¥nk(r) =
S(E)=U, Sn(E), Sn(E)={keB:ecy=E}
Fix x,y € RY define R := RR := x — y where R > 0,|R| = 1.

ey (r) for k € B, [tk is R-periodic]

[S(er) = Fermi surface]

Proposition 1: Decay of the Green's function. Suppose that, at points k € S(E) with normal in the direction
R, the surface S(E) has non-zero Gauss curvature. Then,

GOE(x,y):R_% Z cke B+ O(R™ dH) (6)

d—1
Uk () (y) @8 =1 8"k

d {K;} are the principal curvatures of S(E) at k.
IVemd  TT /I an J

as R = |x — y| — oo, where ¢, = (4

Remark: If S(E) has s non-zero principal curvatures, we have |GF(x, y)| < R™2. The exact asymptotic
behaviour is more complicated: e.g. [2].
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Figure 1: Decay of the Green's function for three model Fermi surfaces for d = 2. R, =
Left: plots of the Fermi surface, together with points k in (6) for R, (red) and R, (blue).

Right: Im G5 (R, 0) and the asymptotic behaviour from Proposition 1 (dotted) for R, (red) and R, (blue).

(R,0),R, =(0,R).

Sketch of the Proof. To simplify the proof, take Hy := £(—iV) (in place of Hy = —A + W,,). Then,

e'k'R P 1
Go'(x.) = lo;f(;][ E+in— 5:(/<)dl B —E[(p.v

fs e 2 dk We then apply stationary phase results [6] to the oscillatory integral /.
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Recall: For x,y € RY define R == RR = x — y where R > 0, \E\ =1

Proposition 2. Suppose that, at points k € S(ep) with normal in the direction R, the Fermi surface S(ey) has
non-zero Gauss curvature. Then,
R9m )

ki k_€S(ep):

V&‘k A
£ .R=+1
\VEki|

I |V€k+HV€k |
™ [Vek, [+ Ver_| ks Che

xo(x,y) = ch ke IR 1 o(R(9H1) (8)

as R = |x — y| = 00, where ¢y, =

Remark: By Proposition 2, we have xoV/(x) ~ |x|~¢ for all V with sufficient decay at infinity.
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Figure 2: Decay of xo(x, y) for the three model Fermi surfaces from Figure 1, R, = (R,0), R, := (0, R).
Left: plots of the Fermi surface, together with nesting vectors k; — k_ as in (8) for R, (red) and R, (blue).
Right: Xo(x, y) and the asymptotic behaviour from Proposition 2 (dotted) for R, (red) and R, (blue).

Sketch of the Proof. Again, we simplify notation by considering H = &(—iV):
1 °F .
—%Im/ GE(x,y)GE(y, x)dE ~ R4 / Z Ck, ci_e'krhe
e * k+.k
h VE(kﬂ;)

where £ — k.(E) are smooth with ==z . R = 41. Moreover, L(+£ ke R) =|Ve(ks)|'R.
Therefore, one may use a partition of unity on (—o0, ep] and integration by parts to conclude. []

Xo(x,y) = VRAE (9)

Conclusions & Remarks

e At finite temperature, py — po decays as quickly as V/, and py — pg — xoV decays faster than V. This is a

key fact that allows one to apply a fixed point argument to (2).

e At zero temperature, the situation is very different: We have shown that the response to an effective
potential decays at most algebraically with rate depending on the dimension and Fermi surface,

e We have been unable thus far to extend the analysis to the nonlinear model (2) but an additional approach
involving scattering theory seems promising.

Remarks:

e Under the same assumptions as Proposition 2, the density matrix po(x, y) satisfies

( ) |X o y|—d+1 Im Z /k (x—=y) + O(|X — y|_d+3)

as |x — y| — oo, where the summation is over the same set as in (6) and ¢k = L|Veg]ck.
® Free electron gas: the decay of x( results from the non-analytic behaviour of the Lindhard function [4, 5].

Future: More complicated (realistic) Fermi-surfaces:

Figure 3: Examples of non-spherical Fermi surfaces. Left: Aluminium, Middle: Chromium, Right: Lead
Images taken from the Periodic Table of the Fermi Surfaces of Elemental Solids [1].
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