

Friedel Oscillations in the reduced Hartree–Fock model Jack Thomas. Joint work with Antoine Levitt.

Abstract: When a defect potential is placed in a material, the material rearranges and the total potential at long-range is screened by the electrons. In the finite temperature reduced Hartree–Fock model, small defects are completely screened [\[3\]](#page-0-0); the total change in potential decays exponentially. On the other hand, in metals at zero temperature, the presence of the Fermi-surface introduces non-analytic behaviour into the independent-particle susceptibility χ_0 , leading to what are known as Friedel oscillations; the total potential oscillates and decays algebraically, with exponent depending on the dimensionality.

Introduction

Suppose we have a lattice $\mathcal{R}\subset\mathbb{R}^d$ and an associated unit cell Γ , we let $L^2_{\rm per} \coloneqq \{f\in L^2(\Gamma)\colon f$ is \mathcal{R} -periodic $\}.$ For a fixed periodic potential $W_{\rm per}\in L^2_{\rm per}$, associated Fermi level $\varepsilon_{\rm F}$, consider the response to an effective potential V :

$$
\rho_V(x) = F_{\varepsilon_F}(-\Delta + W_{\text{per}} + V)(x, x)
$$

= $\rho_0(x) + \chi_0 V(x) + \cdots$ (1)

where $\;\bullet \; \mathsf{F}_{\varepsilon_\mathrm{F}}(x) \coloneqq \big(1+e$ $\frac{x-\varepsilon_F}{F}$ $\frac{\overline{\kappa_{\rm eff}}}{\overline{\kappa_{\rm B}\tau}})^{-1}$ is the Fermi–Dirac distribution with temperature $\, \mathcal{T} \geq 0$ and \bullet χ_0 is the independent particle susceptibility operator.

Linear model: $V = V_{\text{def}}$, Reduced Hartree–Fock (rHF): $V = V_{\text{def}} + (\rho_V - \rho_0) \star | \cdot |^{-1}$, $\hspace{2.6cm} (2)$

Finite temperature: $\bullet \chi_0 V$ decays "as quickly as" V,

• rHF: small defects are completely screened; $V (V_{\text{def}})$ in (2) decays exponentially [\[3\]](#page-0-0).

Zero temperature: • Fermi surface leads to fundamentally different behaviour,

 \bullet χ_0 V oscillates and decays algebraically with rate depending on the Fermi surface.

Remark: If $S(E)$ has κ non-zero principal curvatures, we have $|G_0^E|$ $\vert C_0^E(x,y)\vert \lesssim R^{-\frac{\kappa}{2}}.$ The exact asymptotic behaviour is more complicated: e.g. [\[2\]](#page-0-1).

Figure 2: Decay of $\chi_0(x, y)$ for the three model Fermi surfaces from Figure 1, $R_x := (R, 0), R_y := (0, R)$. Left: plots of the Fermi surface, together with nesting vectors $\bm k_+-\bm k_-$ as in [\(8\)](#page-0-4) for $\underline{\bm R}_\chi$ (red) and $\underline{\bm R}_y$ (blue). Right: $\chi_0(x,y)$ and the asymptotic behaviour from Proposition 2 (dotted) for \underline{R}_x (red) and \underline{R}_y (blue).

Sketch of the Proof. Again, we simplify notation by considering $H = \varepsilon(-i\nabla)$:

Decay of the Green's Function

Non-interacting response given in terms of the Green's function G_V^E V^{\pm} :

$$
\rho_V(x) = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\varepsilon_F} G_V^E(x, x) \mathrm{d}E \tag{3}
$$

where

$$
G_V^E := \lim_{\eta \downarrow 0} (E + i\eta - H_0 - V)^{-1}
$$

= $G_0^E + G_0^E V G_0^E + G_0^E V G_0^E V G_0^E + G_0^E V G_0^E V G_0^E + \cdots$ (Dyson)

In particular, we have

Proposition 2. Suppose that, at points $k \in S(\varepsilon_F)$ with normal in the direction \hat{R} , the Fermi surface $S(\varepsilon_F)$ has non-zero Gauss curvature. Then,

$$
\rho_V(x) = \rho_0(x) + \chi_0 V(x) + \cdots + \chi_0^{(N)}[V](x) + \cdots
$$
\n(4)

$$
\chi_0(x,y) = -\frac{1}{\pi} \, \text{Im} \, \int_{-\infty}^{\varepsilon_F} G_0^E(x,y) G_0^E(y,x) \, \mathrm{d}E. \tag{5}
$$

Therefore, the off-diagonal decay of \mathcal{G}_0^E γ_0^E leads to corresponding rates of decay for χ_0 and $\rho_V-\rho_0.$

Notation: H_0 is Bloch diagonal with eigenpairs: ε_{nk} , $\psi_{nk}(r) = e^{ik \cdot r} u_{nk}(r)$ for $k \in \mathcal{B}$, [u_{nk} is R-periodic] $S(E) = \bigcup_n S_n(E), S_n(E) \coloneqq \{k \in \mathcal{B} \colon \varepsilon_{nk} = E\}.$ [S (ε_F) = Fermi surface] Fix $x, y \in \mathbb{R}^d$, define $\underline{R} \coloneqq R \hat{\underline{R}} \coloneqq x - y$ where $R \geq 0, |\hat{\underline{R}}| = 1$.

Proposition 1: Decay of the Green's function. Suppose that, at points $k \in S(E)$ with normal in the direction \hat{R} , the surface $S(E)$ has non-zero Gauss curvature. Then,

$$
G_0^E(x, y) = R^{-\frac{d-1}{2}} \sum_{\substack{k \in S_n(E):\\ \frac{\nabla \varepsilon_{nk}}{|\nabla \varepsilon_{nk}|} \cdot \hat{R} = 1}} c_k e^{ik \cdot \hat{R}} + O\left(R^{-\frac{d+1}{2}}\right)
$$
(6)

as $R=|x-y|\to\infty$, where $c_{\bm{k}}\coloneqq\mathcal{C}_d\frac{u_{n\bm{k}}(x)u_n^{\star}}{|\nabla\varepsilon_{n\bm{k}}|}$ $\frac{\partial}{\partial k}(y)$ $|\nabla \varepsilon_{n\boldsymbol{k}}|$ $e^{-i\frac{\pi}{4}\sum_{j=1}^{d-1} \text{sgn}\kappa_{kj}}$ $\frac{d^2\omega_{j=1}}{\prod_{j=1}^{d-1}\sqrt{|\kappa_{kj}|}}$ and $\{\kappa_{kj}\}$ are the principal curvatures of $S(E)$ at $k.$

- At finite temperature, $\rho_V \rho_0$ decays as quickly as V, and $\rho_V \rho_0 \chi_0 V$ decays faster than V. This is a key fact that allows one to apply a fixed point argument to (2).
- At zero temperature, the situation is very different: We have shown that the response to an effective potential decays at most algebraically with rate depending on the dimension and Fermi surface,
- We have been unable thus far to extend the analysis to the nonlinear model (2) but an additional approach involving scattering theory seems promising.

- as $|x y| \to \infty$, where the summation is over the same set as in [\(6\)](#page-0-2) and $\widetilde{c}_k := \frac{1}{\pi}$ $\frac{i}{\pi}|\nabla \varepsilon_{\bm{k}}|c_{\bm{k}}.$
- Free electron gas: the decay of χ_0 results from the non-analytic behaviour of the Lindhard function [\[4,](#page-0-5) [5\]](#page-0-6). Future: More complicated (realistic) Fermi-surfaces:

Figure 1: Decay of the Green's function for three model Fermi surfaces for $d = 2$. $\underline{R}_x := (R, 0), \underline{R}_y := (0, R)$. Left: plots of the Fermi surface, together with points \bm{k} in [\(6\)](#page-0-2) for $\underline{\bm{R}}_{\chi}$ (red) and $\underline{\bm{R}}_{\mathrm{y}}$ (blue). Right: Im G_0^E $\delta^L_0(\underline{R},0)$ and the asymptotic behaviour from Proposition 1 (dotted) for \underline{R}_χ (red) and \underline{R}_y (blue).

Sketch of the Proof. To simplify the proof, take
$$
H_0 := \varepsilon(-i\nabla)
$$
 (in place of $H_0 = -\Delta + W_{\text{per}})$. Then,

$$
G_0^E(x,y) = \lim_{\eta \downarrow 0} \int_B \frac{e^{ik \cdot R}}{E + i\eta - \varepsilon(k)} \mathrm{d}k = -\frac{1}{|\mathcal{B}|} \Big[\Big(\mathrm{p.v.} \frac{1}{\varepsilon} \Big) I(E + \cdot) + i\pi I(E) \Big]
$$
(7)

where $\mathit{I}(E) \coloneqq \int_{\mathcal{S}(E)}$ $e^{ik \cdot \underline{R}}$ $\frac{e^{i\bm{\kappa}\cdot\mathbf{a}}}{|\nabla\varepsilon(\bm{k})|}$ d \bm{k} . We then apply stationary phase results [\[6\]](#page-0-3) to the oscillatory integral /.

Independent Particle Susceptibility & Linear Response

Recall: For $x, y \in \mathbb{R}^d$, define $\underline{R} := R \hat{\underline{R}} := x - y$ where $R \ge 0, |\hat{\underline{R}}| = 1$.

$$
\chi_0(x,y) = R^{-d} \operatorname{Im} \sum_{\substack{k_+,k_-\in S(\varepsilon_F):\\ \frac{\nabla \varepsilon_{k_+}}{|\nabla \varepsilon_{k_+}|} \cdot \hat{\mathbf{R}} = \pm 1}} c_{k_+k_-} e^{i(k_+-k_-) \cdot \mathbf{R}} + O(R^{-(d+1)})
$$
(8)

as $R=|x-y|\to\infty$, where $\bm{c}_{\bm{k}_+\bm{k}_-}\coloneqq\frac{1}{\pi}$ π $|\nabla \varepsilon_{\bm{k}_+}||\nabla \varepsilon_{\bm{k}_-}|$ $\frac{|\nabla \varepsilon_{k+}||\nabla \varepsilon_{k-}|}{|\nabla \varepsilon_{k+}|+|\nabla \varepsilon_{k-}|}c_{k+}c_{k-}$

Remark: By Proposition 2, we have $\chi_0 V(x) \sim |x|^{-d}$ for all V with sufficient decay at infinity.

$$
\chi_0(x,y) = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\varepsilon_F} G_0^E(x,y) G_0^E(y,x) \mathrm{d}E \sim R^{-(d-1)} \int_{-\infty}^{\varepsilon_F} \sum_{k+,k_-} c_{k_+} c_{k_-} e^{i(k_+-k_-) \cdot \underline{R}} \mathrm{d}E \tag{9}
$$

where $E\mapsto \pmb k_\pm(E)$ are smooth with $\frac{\nabla \varepsilon(\pmb k_\pm)}{|\nabla \varepsilon(\pmb k_\pm)|}$ $\frac{\nabla \varepsilon(\pmb{k}_\pm)}{|\nabla \varepsilon(\pmb{k}_\pm)|}\cdot \hat{\pmb{R}} = \pm 1$. Moreover, $\frac{\mathrm{d}}{\mathrm{d}t}$ $\frac{\text{d}}{\text{d}E}(\pm \mathbf{k}_{\pm} \cdot \mathbf{R}) = |\nabla \varepsilon(\mathbf{k}_{\pm})|^{-1} R.$ Therefore, one may use a partition of unity on $(-\infty, \varepsilon_F]$ and integration by parts to conclude.

Conclusions & Remarks

Remarks:

 \Box

• Under the same assumptions as Proposition 2, the density matrix $\rho_0(x, y)$ satisfies

$$
\rho_0(x, y) = |x - y|^{-\frac{d+1}{2}} \ln \sum_{k} \widetilde{c_k} e^{ik \cdot (x - y)} + O(|x - y|^{-\frac{d+3}{2}})
$$

Figure 3: Examples of non-spherical Fermi surfaces. Left: Aluminium, Middle: Chromium, Right: Lead Images taken from the Periodic Table of the Fermi Surfaces of Elemental Solids[[1\]](#page-0-7).

References

- Tat-Sang Choy et al. "A Database of Fermi Surfaces in Virtual Reality Modeling Language". In: APS March Meeting Abstracts. 2000. URL: <https://www.phys.ufl.edu/fermisurface/>.
- Michael Greenblatt. "Resolution of singularities, asymptotic expansions of integrals and related phenomena". In: Journal d'Analyse Mathématique 111.1 (2010), pp. 221-245.
- Antoine Levitt. "Screening in the Finite-Temperature Reduced Hartree–Fock Model". In: Archive for Rational Mechanics and Analysis 238.2 (2020), pp. 901–927.
- [4] Bogdan Mihaila. Lindhard function of a d-dimensional Fermi gas. 2011. eprint: arXiv: 1111. 5337.
- [5] George E. Simion and Gabriele F. Giuliani. "Friedel oscillations in a Fermi liquid". In: Phys. Rev. B 72.4 (2005).
- [6] Elias M. Stein. Harmonic Analysis. Princeton University Press, Dec. 1993.

December, 2024 jack.thomas@universite-paris-saclay.fr