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Density Functional Theory

Many-body Schrödinger equation: HtotΨ = EΨ

Born–Oppenheimer: solve for the electrons HBO = HBO(r)
[where r = (r1, . . . , rNat) ∈ (Rd)Nat ]

Kohn–Sham equations:

HKSψi (x) :=
(
− 1

2∆+ V (x)
)
ψi (x) = εiψi (x)

ρ(x , y) :=
∑
i

F (εi )ψ
⋆
i (x)ψi (y), ρ(x) := ρ(x , x)

where F (εi ) are the single particle occupation numbers

V = V [ρ]⇝ self-consistent field,

Energy: EDFT[ρ] =
∑

i F (εi )εi + . . .
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Tight Binding Model

Discretize: Hψi = εiψi , H ∈
(
RNb×Nb

)Nat×Nat where

Hℓk,ab :=

∫
ϕℓa(x)

[
− 1

2
∆ + V (x)

]
ϕkb(x)dx

{ϕℓa}Nb
a=1 - atom-centered localised basis functions at rℓ

Assume: |Hℓk | ≲ e−γ0rℓk [rℓk := |rℓ − rk |]
Band energy: ETB :=

∑
i F (εi )εi = Tr

(
HF (H)

)
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[Take S = id by considering
Löwdin transform: S−T/2HS1/2]

F =

µ = εF

F β =

Orbitals

Spectrum

More details
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Outline
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Goal: (Qualitative) justification for the MLIP assumptions
Proof: Polynomial approximation

Density Functional Theory

Empirical Quantum Mechanics

Interatomic potentials

EKS

ETB(r) =
∑
i

F (εi )εi
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r6

r4

r7

r1

r2

r3
r5

r6

r4

r7

r1

r2

r13

r15

r16

r14r17

r12

r = {rℓ} ⊂ Rd

rℓk := rk − rℓ
rℓk := |rℓk |

Interatomic potentials:

E (r) =
∑
ℓ

Eℓ

(
{rℓk}k ̸=ℓ

)
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Example: Classical interatomic potential for Si:

Stillinger–Weber:

Eℓ(r) =
∑
k ̸=ℓ

A
(
Br−p

ℓk − r−q
ℓk

)
fa(rℓk) +

∑
k,m,n :

ℓ∈{k,m,n}

λ
(
cos θkmn +

1
3

)2
fa(rmk)

γfa(rmn)
γ

Not systematically improvable...

Machine Learning:

Eℓ(r) = Eℓ(r ;θ)
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Machine Learned IPs (MLIPs)
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“All interatomic potential models make various (often ad hoc) assumptions on the PES
regarding low-rank structures and locality of interactions. In general, one aims to represent a
complex fully many-body PES E (exactly or approximately) as a combination of “simple”
components, e.g., low-dimensional or low-rank. Here, we shall assume that E can be written in
the form of a body-order expansion,

E
(
{r1, . . . , rJ}

)
=

J∑
ℓ=1

Eℓ

(
{rℓk}k ̸=ℓ

)
Eℓ

(
{rℓk}k ̸=ℓ

)
= V0 +

∑
k

V1

(
rℓk

)
+

∑
k1<k2

V2

(
rℓk1 , rℓk2

)
+ · · ·+

∑
k1<···<kN

VN

(
rℓk1 , . . . , rℓkn

)
,

(2.1)

with rℓk := rk − rℓ, V0 ∈ R and N ∈ N being the maximal order of interaction.”

ACE
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Goal: (Qualitative) justification for the MLIP assumptions
Proof: Polynomial approximation

Density Functional Theory

Empirical Quantum Mechanics

Interatomic potentials

E IP(r) =
∑
ℓ

E IP
ℓ (r ;θ)

local decomposition
into “simple” partsEKS

ETB(r) =
∑
i

F (εi )εi
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Locality: Spatial Decomposition

Recall:

ETB(r) =
∑
i

F (εi )εi = Tr
(
HF (H)

)
=

∑
ℓ

[
HF (H)

]
ℓℓ

Define the local observables as

ETB
ℓ (r) :=

[
HF (H)

]
ℓℓ

=

∮
C
zF (z)

[
(z −H)−1

]
ℓℓ

dz

2πi

=

∫
R
xF (x)dDℓ(x)

12 / 41

Interatomic potentials

E IP(r) =
∑
ℓ

E IP
ℓ

(
{rℓk}k ̸=ℓ;θ

)

C

σ σ

CβCβ
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Locality: Spatial Decomposition
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∂ETB
ℓ (r)
∂rk

=

∮
C
zF (z)

[
(z −H)−1∂H(r)

∂rk
(z −H)−1

]
ℓℓ

dz

2πi

Resolvent Estimates: Sketch for NN Hamiltonians

Suppose Hℓk = 0 for all rℓk > 1.
Then, [HN ]ℓk = 0 for all rℓk > N and∣∣(z −H)−1

ℓk

∣∣ = min
PN∈PN

∣∣[(z −H)−1 − PN(H)
]
ℓk

∣∣
≤ min

PN∈PN

∥∥(z − · )−1 − PN

∥∥
L∞(σ(H))

≲ e−γN ≤ e−γrℓk

where γ ∼ dist
(
z , σ(H)

)
.

Theorem:∣∣∣∣∂ETB
ℓ (r)
∂rk

∣∣∣∣ ≤ Ce−η rℓk

η > 0 depends on:

locality of H,
analyticity of zF (z),

spectrum σ(H).

[pictures]



“Proof”: Locality Estimates

14 / 41

∂ETB
ℓ (r)
∂rk

=

∮
C
zF (z)

[
(z −H)−1∂H(r)

∂rk
(z −H)−1

]
ℓℓ

dz

2πi

Resolvent Estimates: Sketch for NN Hamiltonians

Suppose Hℓk = 0 for all rℓk > 1.
Then, [HN ]ℓk = 0 for all rℓk > N and∣∣(z −H)−1

ℓk

∣∣ = min
PN∈PN

∣∣[(z −H)−1 − PN(H)
]
ℓk

∣∣
≤ min

PN∈PN

∥∥(z − · )−1 − PN

∥∥
L∞(σ(H))

≲ e−γN ≤ e−γrℓk

where γ ∼ dist
(
z , σ(H)

)
.

Theorem:∣∣∣∣∂ETB
ℓ (r)
∂rk

∣∣∣∣ ≤ Ce−η rℓk

η > 0 depends on:

locality of H,
analyticity of zF (z),

spectrum σ(H).

[pictures]



“Proof”: Locality Estimates

14 / 41

∂ETB
ℓ (r)
∂rk

=

∮
C
zF (z)

[
(z −H)−1∂H(r)

∂rk
(z −H)−1

]
ℓℓ

dz

2πi

Resolvent Estimates: Sketch for NN Hamiltonians

Suppose Hℓk = 0 for all rℓk > 1.
Then, [HN ]ℓk = 0 for all rℓk > N and∣∣(z −H)−1

ℓk

∣∣ = min
PN∈PN

∣∣[(z −H)−1 − PN(H)
]
ℓk

∣∣
≤ min

PN∈PN

∥∥(z − · )−1 − PN

∥∥
L∞(σ(H))

≲ e−γN ≤ e−γrℓk

where γ ∼ dist
(
z , σ(H)

)
.

Theorem:∣∣∣∣∂ETB
ℓ (r)
∂rk

∣∣∣∣ ≤ Ce−η rℓk

η > 0 depends on:

locality of H,
analyticity of zF (z),

spectrum σ(H).

[pictures]



Outline

1 Introduction

2 Locality

3 Body-ordered approximation
Linear schemes
Nonlinear schemes
Examples

4 Polynomial Approximation
Logarithmic potential theory
Schwarz–Christoffel mappings

5 Conclusions

15 / 41



Body-ordered approximations

Locality: Eℓ(r) = Eℓ

(
{rℓk}rℓk<rcut

)
+O(e−ηrcut)

In practice, Eℓ is still high-dimensional
Aim: Reduce the dimensionality further

Body-ordered approximation:

Eℓ(r) ≈ V0+
∑
k ̸=ℓ

V1(rℓk)+
∑

k1,k2 ̸=ℓ

V2(rℓk1 , rℓk2)+· · ·+
∑

k1,...,kN ̸=ℓ

VN(rℓk1 , . . . , rℓkN )

“Incorporating environment information leads to exponential
convergence” =⇒ replace Vn with VnN

16 / 41

Interatomic potentials

E IP(r) =
∑
ℓ

E IP
ℓ (r ;θ)

Eℓ - short-ranged & “simple”

“In view of the fact that the Si crystal consists of atoms held
in place by strong and directional bonds, it seems reasonable
at first sight that the corresponding Φ could be approximated
by a combination of pair and triplet potentials, V1 and V2.”

— Stillinger, Weber. Phys. Rev. B 31 (1985)

“In this so-called many-body expansion of Φ, it is usually believed that the
series has a quick convergence, therefore, the higher moments may be
neglected.”

— Haliciogli, Pamuk, Erkoc. Phys Status Solidi B 149 (1988)

“...the many-body potentials in general exhibit a rather slow convergence.”

“It is sometimes argued that a potential expansion converges only slowly
with respect to the order of the potentials and is thus impractical for use
in molecular dynamics simulations.”

— Drautz, Fähnle, Sanchez. J. Phys. Condens. Matter 16 (2004)

“The convergence of the expansion is slow and, for example,
for bulk metals potentials VK up to K ≥ 15 are required.”

— Drautz. Phys. Rev. B 99 (2019)

Vacuum cluster
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Body-ordered approximations ε(z) := zF (z)

Main idea: Polynomials are body-ordered:

[Hn]ℓℓ =
∑

ℓ1,...,ℓn−1

Hℓℓ1Hℓ1ℓ2 . . .Hℓn−1ℓ

[“spatial correlations”, “moments” (Hn)ℓℓ =
∫
xndDℓ(x)]

Suppose ε ≈ εN where εN ∈ PN ,
Then, EN

ℓ := εN(H)ℓℓ
is a body-ordered
approximation to Eℓ

Claim:∣∣Eℓ − EN
ℓ

∣∣
≤ sup

z∈σ(H)
|ε(z)− εN(z)|

“convergence ↔ smoothness of ε”

17 / 41

Recall
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Linear schemes: EN
ℓ := εN(H)ℓℓ

Idea #1: Upper Bounds

Finite temperature (T > 0): Chebyshev projection

∣∣Eℓ − EN
ℓ

∣∣ ≤ 2∥ε∥L∞(Eχ)

χ− 1
χ−N

≤ Ce−cT N

where F is analytic on Eχ.

Insulators (g > 0): ∃εN s.t.

∣∣Eℓ − EN
ℓ

∣∣ ≤ C√
N

√
2− g

2 + g

N

∼ C√
N
e−

1
4
gN

where g is the spectral gap.
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[Proof: Chebyshev coefficients decay exponentially
depending on region of analyticity]

[Hasson 2007]
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Linear schemes: EN
ℓ := εN(H)ℓℓ

Idea #2: Asymptotic bounds

Interpolation nodes: XN := {xj}Nj=0

Let εN := IXN
ε polynomial interpolation of ε on XN

Equilibrium measures

Given Σ ⊂ R, there exists an equilibrium measure ωΣ such that

1

N

N∑
j=0

δ( · − xj)⇀ ωΣ =⇒
∥∥ε− εN∥∥L∞(Σ)

≲ e−γ⋆
NN

and γ⋆ = lim
N→∞

γ⋆N is optimal.

19 / 41

Recall:∣∣Eℓ − EN
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∣∣ ≤ sup
z∈σ(H)

|ε(z)− εN(z)|

Example: Chebyshev nodes

dω[−1,1](x) =
1
π

1√
1−x2

dx .
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Theorem (JT, Chen, Ortner (2022))

There exists a linear ΘN : RN → R such that∣∣Eℓ(r)−ΘN

(
Hℓℓ, . . . , [HN ]ℓℓ

)∣∣ ≤ Ce−γNN

where limN→∞ γN = γ > 0, and γ ∼ g + T.

However,

Different ΘN for different phases of the material

Defects affect the convergence rate

[Here, ΘN

(
Hℓℓ, . . . , [HN ]ℓℓ

)
is body-ordered]
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Idea #3: Nonlinear schemes

Recall, local density of states Dℓ is a (positive) measure
supported on σ(H) and satisfying

ε(H)ℓℓ =
∫
ε dDℓ

Idea: “Method of moments”. Find DN
ℓ such that

[Hn]ℓℓ =

∫
xndDN

ℓ (x) (n = 0, 1, . . . ,N) −→ EN
ℓ (r) :=

∫
ε dDN

ℓ ,

Then∣∣Eℓ(r)− EN
ℓ (r)

∣∣ =

min
εN∈PN

∣∣∣ ∫

(

ε

−εN
)

d
(
Dℓ − DN

ℓ

)∣∣∣

≤ ∥Dℓ − DN
ℓ ∥TV min

εN∈PN

∥∥ε− εN∥∥L∞(σ(H)∪supp(DN
ℓ ))

[PN = polynomials degree N]
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Eℓ = ΘN

(
Hℓℓ, . . . , [HN ]ℓℓ

)

1[Silver, Roeder, Voter, Kress. J. Comput. Phys. 124 (1996)]
2[Mead, Papanicolaou. J. Math. Phys. 25 (1984)]
3[Haydock, Heine, Kelly. J. Phys. C 5 (1972), 8 (1975)]
4[Horsfield et al. Phys. Rev. B 53 (1996)]
5[Suryanarayana et al. J. Mech. Phys. Solids 61 (2013)]
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Linear schemes:

Chebyshev projection
−→ Kernel polynomial method1

Newton–Cotes quadrature
(equispaced nodes)

Clenshaw–Curtis quadrature
(Chebyshev nodes)

General quadrature
(with νN ⇀⋆ ωσ(H))

Nonlinear schemes:

Maximum entropy method2 More

Recursion method3: spectral measure
corresponding to truncated
tridiagonalisation of H More

−→ bond order potentials4

Gauss quadrature More

−→ linear-scaling spectral Gauss
quadrature5

https://0-journals-aps-org.pugwash.lib.warwick.ac.uk/pre/pdf/10.1103/PhysRevE.56.4822
https://bayes.wustl.edu/Manual/MeadPapanicolaou.pdf
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.53.12694
https://www.sciencedirect.com/science/article/abs/pii/S0022509612001949


Theorem (JT, Chen, Ortner (2022))

There exists a linear ΘN : RN → R such that∣∣Eℓ(r)−ΘN

(
Hℓℓ, . . . , [HN ]ℓℓ

)∣∣ ≤ Ce−γNN

where limN→∞ γN = γ > 0, and γ ∼ g + T.

Theorem (JT, Chen, Ortner (2022))

Fix N odd. There exist U ⊂ CN and an analytic function
ΘN : U → C such that∣∣Eℓ(r)−ΘN

(
Hℓℓ, . . . , [HN ]ℓℓ

)∣∣ ≤ Ce−ηNN

where limN→∞ ηN = η > 0, and η ∼ g̃ + T.
Now,

ΘN is a “universal” nonlinearity

Eigenvalues in the gap do not affect the convergence rates

23 / 41
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Different ΘN for
different phases of
the material
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gap affect the
convergence rate

g̃ = gap in the essential
spectrum
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Polynomial Approximation

Asymptotically optimal rates:
General Σ ≡ σ(H) with T > 0 or g > 0

X = {xj}Nj=0 – interpolation nodes
IX ε ∈ PN with IX ε(xj) = ε(xj)

25 / 41

Hermite Integral formula

Let C contour encircling X ∪ {x},

ε(x)− IX ε(x) =

∮
C

ℓ(x)

ℓ(z)

ε(z)

z − x

dz

2πi

where ℓ(x) :=
∏N

j=0(x − xj) is the node polynomial

Proof:

ℓj(x) =
∏
k ̸=j

x − xk
xj − xk

=
ℓ(x)

/
(x − xj)∏

k ̸=j(xj − xk)
=

∮
Cj

ℓ(x)
/
(x − z)∏

k ̸=j(z − xk)

1

z − xj

dz

2πi
=

∮
Cj

ℓ(x)

ℓ(z)

1

x − z

dz

2πi

Cβ

X = {xj}
z
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Polynomial Approximation

Hermite Integral formula =⇒

|ε(x)− IX ε(x)| ≤
∥ε∥L∞(C )

2πdist
(
σ(H),C

) sup
x∈σ(H),z∈C

∣∣∣∣ℓ(x)ℓ(z)

∣∣∣∣
where ℓ(x) :=

∏N
j=0(x − xj) (node polynomial),

Goal: Understand the asymptotic
behaviour of∣∣∣∣ℓ(x)ℓ(z)

∣∣∣∣ as N →∞

How to choose X?

26 / 41

Cβ

X = {xj}
z



Link to Logarithmic Potential Theory

Define νN := 1
N

∑N
j=0 δxj and note

log
[∣∣ℓ(x)∣∣ 1

N

]
=

1

N

∑
j

log
∣∣x − xj

∣∣ = ∫
log |x − t| dνN(t)

If νN ⇀⋆ ν, then

lim
N→∞

|ℓ(x)|
1
N = e−Uν(x) where Uν(x) :=

∫
log

1

|x − t|
dν(t)

body-order approx. ←→ polynomial approx.

body-order approx. ←→
∣∣∣ ℓ(x)ℓ(z)

∣∣∣ for x ∈ σ(H) and z ∈ C

body-order approx. ←→ behaviour of Uν(x)− Uν(z)
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Define νN := 1
N

∑N
j=0 δxj and note

log
[∣∣ℓ(x)∣∣ 1

N

]
=

1

N

∑
j

log
∣∣x − xj

∣∣ = ∫
log |x − t| dνN(t)

If νN ⇀⋆ ν, then

lim
N→∞

|ℓ(x)|
1
N = e−Uν(x) where Uν(x) :=

∫
log

1

|x − t|
dν(t)
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Link to Potential Theory

Σ ⊂ C – compact approximation domain,

Find ω ∈M(Σ) [unit Borel measure, supported on Σ]
minimising the energy

I(ω) :=

∫
Uω(x)dω(x) =

∫∫
log

1

|x − t|
dω(t)dω(x)

∃! minimiser ωΣ – equilibrium measure with
VΣ := infM(Σ) I ∈ (−∞,∞] – Robin’s constant
(∃ =M(Σ) weak⋆ compact and I lsc, ! = strict convexity)

Frostman:

UωΣ(z) ≤ VΣ for z ∈ C
UωΣ(z) = VΣ for z ∈ Σ
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Link to Potential Theory

Frostman:

UωΣ(z) ≤ VΣ for z ∈ C
UωΣ(z) = VΣ for z ∈ Σ

Choose interpolation points asymptotically
distributed according to ωΣ: for x ∈ Σ and z ∈ C ,

lim
N→∞

∣∣∣∣ℓ(x)ℓ(z)

∣∣∣∣ 1
N

= e−
[
VΣ−UωΣ (z)

]
=: e−gΣ(z)

Q: How to compute gΣ(z) = VΣ − UωΣ(z) ≥ 0?

(Q: How to choose X to obtain this rate of approximation?)
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Link to Schwarz–Christoffel mappings

Frostman:

UωΣ(z) ≤ VΣ for z ∈ C
UωΣ(z) = VΣ for z ∈ Σ

Choose interpolation points asymptotically
distributed according to ωΣ: for x ∈ Σ and z ∈ C ,

lim
N→∞

∣∣∣∣ℓ(x)ℓ(z)

∣∣∣∣ 1
N

= e−
[
VΣ−UωΣ (z)

]
=: e−gΣ(z)

The function z 7→ gΣ(z) satisfies
∆gΣ = 0 on C \ Σ,
gΣ = 0 on Σ,
gΣ(z) ∼ log |z | as z →∞

∃! solution to this Green’s function problem
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Σ = [−1, 1]

31 / 41

Define gΣ(z) := ReGΣ(z) where

g[−1,1](z) = log
∣∣z +√z + 1

√
z − 1

∣∣

Conformal mapping problem: G[−1,1] : C+ → C s.t.

Green’s function problem

Find gΣ s.t.

∆gΣ = 0 on C \ Σ,
gΣ(z) ∼ log |z | as z →∞,

gΣ = 0 on Σ.

G[−1,1]

−→
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Σ = [−1, a] ∪ [b, 1]
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Define gΣ(z) := ReGΣ(z) where

G[−1,a]∪[b,1](z) =

∫ z

1

ζ − z3√
ζ + 1

√
ζ − a

√
ζ − b

√
ζ − 1

dζ,

for some z3 ∈ [a, b]

Green’s function problem

Find gΣ s.t.

∆gΣ = 0 on C \ Σ,
gΣ(z) ∼ log |z | as z →∞,
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How to choose the interpolation nodes?
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I

IIIIIIVV

Fekete Sets [difficult]
minimise I over the space of measures of the form 1

N

∑N
j=0 δxj

Fejer sets
Consider X := G−1

Σ ({i πjN }
N
j=0)

Leja sets
For X = {xj}Nj=0, choose xN+1 ∈ argmaxx∈Σ

∏N
j=0 |x − xj |

For Σ = [−1, 1]:
Chebyshev nodes are asymptotically distributed according to the arcsine measure:

dω[−1,1](x) =
1

π

1√
1− x2

dx
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Approximating F β(z) = (1 + eβz)−1 with polynomials
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Conclusions

E (r) =
∑

ℓ Eℓ(r)
Local pieces −→ transferability
QM/MM schemes: size of the QM region ∼ η

[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]
Thermodynamic limit problems

[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018],
[Ortner, JT. Math. Model. Methods Appl. Sci., 2020]

Eℓ(r) ≈
∑N

n=0

∑
ℓ1,...,ℓn ̸=ℓ VnN

(
rℓℓ1 , . . . , rℓℓn

)
,

e.g. Linear Atomic Cluster Expansion (ACE)

There exists ΘN “universal” with

Eℓ(r) ≈ ΘN

(
ϕ1, . . . , ϕN

)
where ϕn are linear body-ordered.

Nonlinear ACE

Proofs: Polynomial approximation
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Also in the paper:

Classical vacuum cluster expansion
[reasons for slow convergence]

Analysis of bond-order potentials (BOP),
[Recursion method with possibly different terminators]

(partial) Justification for linear-scaling spectral Gauss
quadrature,
[Approximation of ρ = F

(
H[ρ]

)
with ρN = FN

(
H[ρN ]

)
]

Truncation operators and connection to divide-and-conquer
methods

Thank you for your attention!
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What we couldn’t prove (yet?):

Forces converge in the linear schemes∣∣∣∣∂Eℓ

∂rk
−
∂EN

ℓ

∂rk

∣∣∣∣ ≲ e−γrℓk e−ηN

But, this is a lot less obvious in the nonlinear schemes

True if Dℓ has “regular n
th root asymptotic behaviour’:

lim
n→∞

∣∣pn(z ;Dℓ)
∣∣ 1n = egsuppDℓ

(z)

locally uniformly on C \ conv suppDℓ

“Proof”∣∣∣∣∂Eℓ

∂rk
−
∂EN

ℓ

∂rk

∣∣∣∣ ≲ [ ∞∑
n=0

n∑
l=0

∥pl∥2L∞(C )e
−η1n

]
e−η2Ne−γ rℓk
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Self-consistency

Want ρ⋆ℓ = F
(
H[ρ⋆]

)
ℓℓ
,

Approximate with ρN,ℓ = FN
(
H[ρN ]

)
ℓℓ

[where FN is a body-ordered approximation of F ]

If ρ⋆ is stable [linearisation is invertible], then there exist ρN
such that

|ρN,ℓ − ρ⋆ℓ | ≲ e−ηN

Can solve ρN,ℓ = FN
(
H[ρN ]

)
ℓℓ

with the Newton iteration:

ρi+1 = ρi −
(
I − DFN(ρ

i )
)−1(

ρi − FN(H[ρi ])
)

38 / 41



Body-ordered approximations ε(z) := zF (z)

Main idea: Polynomials are body-ordered:

[Hn]ℓℓ =
∑

ℓ1,...,ℓn−1

Hℓℓ1Hℓ1ℓ2 . . .Hℓn−1ℓ

[“spatial correlations”, “moments” (Hn)ℓℓ =
∫
xndDℓ(x)]

Suppose ε ≈ εN where εN ∈ PN ,
Then, EN

ℓ := εN(H)ℓℓ
is a body-ordered
approximation to Eℓ

Claim:∣∣Eℓ − EN
ℓ

∣∣
≤ sup

z∈σ(H)
|ε(z)− εN(z)|

“convergence ↔ smoothness of ε”

39 / 41

Recall

Eℓ = ε(H)ℓℓ =
∫
ε dDℓ

Hide

Proof∣∣Eℓ − EN
ℓ

∣∣ = ∣∣[ε(H)− εN(H)]ℓℓ∣∣
≤ ∥ε(H)− εN(H)∥ℓ2→ℓ2

= sup
z∈σ(H)

|ε(z)− εN(z)|
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Spectrum of the Hamiltonian
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{ℓ : |rdefℓ | ≤ Rdef} finite

sup
ℓ : |rℓ|>Rdef

|rdefℓ − rℓ| ≤ δ

r = rdef =
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Spectrum of the Hamiltonian: Insulators

Back

Back
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σ
(
H(r)

)
=

σ
(
H(rdef)

)
=

Locality:∣∣∣∣∂Eℓ(r)
∂rk

∣∣∣∣ ≤ Ce−η|rℓk |

η ∼ g

Improved estimate:
η ∼ g≫ gdef
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(Kohn–Sham) Density Functional Theory

Notation: (rℓ,Zℓ) position and species of atom ℓ,

Schrödinger eq. ⇝ Kohn–Sham equations

HKSψn :=

(
− 1

2
∆ + Veff(x ; ρ)

)
ψn(x) = λnψn(x),

ρ(x) =
∑
n

F (λn)
∣∣ψn(x)

∣∣2
Veff(x ; ρ) :=

∫
ρ(y)

|x − y |
dy −

∑
m

Zm

|x − rm|
+ Vxc(x ; ρ),

Energy

EKS [ρ] =
∑
n

F (λn)λn + . . .
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DFT

Schrödinger eq. ⇝ Kohn–Sham equations

HKSψn :=

(
− 1

2
∆ + Veff(x ; ρ)

)
ψn(x) = λnψn(x), ρ(x) =

∑
n

F (λn)
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Veff(x ; ρ) :=

∫
ρ(y)

|x − y |
dy −

∑
m

Zm

|x − rm|
+ Vxc(x ; ρ),

Energy

EKS [ρ] =
∑
n

λnF (λn)−
∫
ρ(x)Veff(x ; ρ)

+ Exc[ρ] +
1

2

∫ ∫
ρ(x)ρ(y)

|x − y |
dxdy −

∑
m

Zm

∫
ρ(x)

|x − rm|
dx + EZZ
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Vacuum cluster expansion

E :
⋃∞

J=0

{
{r1, . . . , rJ} ⊂ R3

}
→ R

V0 = E (∅)
V1(r1) = E ({r1})− E (∅)

V2(r1, r2) = E ({r1, r2})− E ({r1})− E ({r2}) + E (∅)
...

VN(r1, . . . , rN) =
∑

K⊆{r1,...,rN}

(−1)N−|K |E (K )

Then,

E ({r1, . . . , rJ}) ≈
N∑

n=0

∑
j1<···<jn

Vn(rj1 , . . . , rjn)

Exact for N = J.
Convergence? Rate of convergence? Not clear!

39 / 41

“An intuitive explanation for this
slow convergence is that we are
building an interaction law for a
condensed or possibly even
crystalline phase material from
clusters in vacuum where the
bonding chemistry is significantly
different.”

Instead:

Replace Vn with VnN
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Numerical experiments: “defect-free”

Approximation domain E1 = [−1,−0.2] ∪ [0.2, 1]

39 / 41



Numerical experiments: with defect

Approximation domain E2 = E1 ∪ [−0.06,−0.03]

39 / 41
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Maximum entropy method

Fix [a, b] ⊃ σ(H), maximise

S(P) := −
∫ b

a

[
P(x) logP(x)− P(x)

]
dx +

N∑
n=0

λn

(∫ b

a
xnP(x)dx − [Hn]ℓℓ

)
Leads to

PN(x) = e−
∑N

n=0 λnxn s.t. first N moments

Moreover, if {(Hn)ℓℓ} is completely monotone, then ∃!P.

39 / 41
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Nonlinear schemes: Recursion method

Let {pn} orthogonal polynomials with respect to Dℓ:

bn+1pn+1(x) = (x − an)pn(x)− bnpn−1(x)

define

TN :=


a0 b1

b1 a1
. . .

. . .
. . . bN
bN aN

 =
(∫

pi (x)xpj(x)dDℓ(x)
)
0≤i ,j≤N

,

[Hn]ℓℓ = [(TN)
n]00 for all n ≤ 2N + 1,

DN
ℓ – spectral measure of TN s.t. EN

ℓ := ε(TN)00

∣∣Eℓ(r)− EN
ℓ (r)

∣∣ ≤ 2 inf
ε2N+1∈P2N+1

∥∥ε− ε2N+1

∥∥
L∞(σ(H)∪supp(DN

ℓ ))

39 / 41

[Lanczos recursion]
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If supp(Dℓ) ∩ [a, b] = ∅, then |supp(DN
ℓ ) ∩ [a, b]| ≤ 1

39 / 41

∣∣Eℓ(r)− EN
ℓ (r)

∣∣ ≤ 2 inf
ε2N+1∈P2N+1

∥∥ε− ε2N+1

∥∥
L∞(σ(H)∪supp(DN

ℓ ))
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Nonlinear schemes: Gauss quadrature

Let {pn} orthogonal polynomials with respect to Dℓ,

Interpolate in X := {zeros of pN+1},

EN
ℓ :=

∑N
j=0 ℓj(H)ℓℓε(xj),

Can show ωj := ℓj(H)ℓℓ ≥ 0 and
∑

j ωj = 1 =⇒∣∣Eℓ(r)− EN
ℓ (r)

∣∣ ≤ 2 inf
ε2N+1∈P2N+1

∥∥ε− ε2N+1

∥∥
L∞(σ(H)∪supp(DN

ℓ ))

Can show that EN
ℓ = Θ

(
Hℓℓ, . . . , (H2N+1)ℓℓ

)
where

Θ: C2N+1 → C is analytic in open neighbourhoods of
”admissible moment sequences”

39 / 41

supp
(
DN
ℓ

)
“nice enough”
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“In general, one aims to represent a complex fully
many-body PES E (exactly or approximately) as a
combination of ‘simple’ components, e.g.,
low-dimensional or low-rank”

— Bachmayr et al. J. Comp. Phys. 454 (2022)

r = {rj}

r = {rσ(j)}Qr := {Qrj}E1({r1k}k ̸=1)E1({r1k}r1k<rcut)
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Tight Binding

Recall: (rℓ,Zℓ) (position, species) of atom ℓ.
Kohn–Sham eqs: HKSψn = λnψn,

Project to a “basis” of local orbitals {ϕℓa}
i.e. ψn(x) =

∑
ℓa Cn,ℓaϕℓa(x)

HCn = λnCn where Hℓa,kb :=

∫
ϕℓaHKSϕkb

[assuming overlap matrix is the identity]

Tight binding assumption:
∣∣Hℓk

∣∣ ≤ h0e
−γ0 rℓk

Band energy:

E (r) =
∑
n

λnF (λn)

[More generally, O(r) :=
∑

n o(λn)]
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Back

E :
∞⋃
J=0

{
{r1, . . . , rJ} ⊂ R3

}
→ R

High dimensional,

Many-body

E =
∑
ℓ

Eℓ({rℓk}k ̸=ℓ)
VN defined on Euclidean space
(fixed dimension)

Eℓ =
N∑

N=0

∑
j1<···<jN

VN(rℓj1 , . . . , rℓjN )

Approximate R = (r1, . . . , rN) 7→ VN(R) where

VN(R) = 0 if max |rj | ≥ rcut,

VN(QR) = VN(R) where QR = (Qrj)Nj=1, Q ∈ O(3),

VN(σR) = VN(R) where σR = (rσ(j))Nj=1, σ ∈ SN

Computationally efficient? For J ≫ N , naively scales like
( J
N
)
∼ JN

N !
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ACE: Approximate VN(R) where R = (r1, . . . , rN) ∈ R3N

1-body basis: ϕnlm(r) = Pn(r)Y
m
l (r̂),

N-body basis: ϕnlm(r1, . . . , rN) :=
∏N

j=1 ϕnj ljmj
(rj)

VN ∈ span
{
ϕnlm : n, l ∈ NN ,m ∈ ZN s.t. − lj ≤ mj ≤ lj

}
Approximate VN with ṼN =

∑
nlm cnlmϕnlm

Can assume ṼN has same symmetries as VN

Permutation invariance: cnlm = cσn,σl ,σm
Reflection symmetry: ϕnlm(−r) = (−1)lϕnlm(r)
ṼN(R) = 1

2

∑
nlm cnlm

(
1 + (−1)

∑
j lj
)
ϕnlm(R),

ṼN(R) =
∑

(n,l ,m) ordered∑
j lj even

cnlm
∑
σ∈SN

∫
SO(3)

(
ϕnlm ◦ σ

)
(QR)dQ

=
∑

(n,l ) ordered,i∑
j lj even

c̃nl i
∑
m

C(nl i)
m

∑
σ∈SN

ϕnlm ◦ σ(R)

40 / 41

Restrict VN to
{r ∈ R3 : |r | > r0}N

{Pn(r)}n – linearly
independent

=: Bnl i (R)
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∑

nlm cnlmϕnlm
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ACE: Trick

(Naive) Cost: compute basis N!, evaluate following
(J
N

)∑
j1<···<jN

ṼN(rj1 , . . . , rjN ) =
∑
nl i

c̃nl i
∑

j1<···<jN

Bnl i (rj1 , . . . , rjN )

∑
j1<···<jN

Bnl i (rj1 , . . . , rjN ) =
1

N!

∑
j1 ̸=···̸=jN

Bnl i (rj1 , . . . , rjN ) =
1

N!

∑
j1,...,jN

Bnl i (rj1 , . . . , rjN ) +WN−1

1

N!

∑
j1,...,jN

Bnl i (rj1 , . . . , rjN ) =
1

N!

∑
j1,...,jN

∑
m

C(nl i)
m

∑
σ∈SN

ϕnlm
(
rjσ(1)

, . . . , rjσ(N)

)
=

∑
m

C(nl i)
m

∑
j1,...,jN

N∏
α=1

ϕnαlαmα

(
rjα

)

=
∑
m

C(nl i)
m

N∏
α=1

J∑
j=1

ϕnαlαmα(rj)

40 / 41

=: Bnl i ({rj})

ACE = expansion in terms
of the basis⋃∞

N=0{Bnl i : n, l ∈ NN , ...}
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ṼN(rj1 , . . . , rjN ) =
∑
nl i

c̃nl i
∑

j1<···<jN

Bnl i (rj1 , . . . , rjN )

∑
j1<···<jN

Bnl i (rj1 , . . . , rjN ) =
1

N!

∑
j1 ̸=···̸=jN

Bnl i (rj1 , . . . , rjN ) =
1

N!

∑
j1,...,jN

Bnl i (rj1 , . . . , rjN ) +WN−1

1

N!

∑
j1,...,jN

Bnl i (rj1 , . . . , rjN ) =
1

N!

∑
j1,...,jN

∑
m

C(nl i)
m

∑
σ∈SN

ϕnlm
(
rjσ(1)

, . . . , rjσ(N)

)

=
∑
m

C(nl i)
m

∑
j1,...,jN

N∏
α=1

ϕnαlαmα

(
rjα

)

=
∑
m

C(nl i)
m

N∏
α=1

J∑
j=1

ϕnαlαmα(rj)

40 / 41

=: Bnl i ({rj})

ACE = expansion in terms
of the basis⋃∞

N=0{Bnl i : n, l ∈ NN , ...}

III

III

IVVVI



ACE: Trick

(Naive) Cost: compute basis N!, evaluate following
(J
N

)∑
j1<···<jN
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Σ = [−1, a] ∪ [b, 1]

41 / 41

Define gΣ(z) := ReGΣ(z) where

G[−1,a]∪[b,1](z) =

∫ z

1

ζ − z3√
ζ + 1

√
ζ − a

√
ζ − b

√
ζ − 1

dζ,

for some z3 ∈ [a, b]

Green’s function problem

Find gΣ s.t.

∆gΣ = 0 on C \ Σ,
gΣ(z) ∼ log |z | as z →∞,

gΣ = 0 on Σ.

G[−1,a]∪[b,1]

−→

z3 ∈ [a, b] s.t. GΣ(a) = GΣ(b)

z3 =

∫ b

a

ζ√
ζ + 1

√
ζ − a

√
ζ − b

√
ζ − 1

dζ∫ b

a

1√
ζ + 1

√
ζ − a

√
ζ − b

√
ζ − 1

dζ
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