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Abstract: “We survey some recent results on the
sparsity of the potential energy landscape (PEL)
aimed to justify and extend the theory of
machine-learning for interatomic potentials”
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Goal: (Qualitative) justification for the assumptions made in
interatomic potentials

Proof: Polynomial approximation
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Density Functional Theory

@ Many-body Schrodinger equation: HiotW = EV
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Density Functional Theory

@ Many-body Schrodinger equation: HiotW = EV

@ Born—Oppenheimer: solve for the electrons Hpo = Hpo(r)
[where r = (r,...,ry,,) € (RY)Nat]

@ Kohn-Sham equations:
M) = (= A+ V() )eilx) = ei(x)
plx,y) = D FENUI (Ui, p(x) = plx,x)

where F(e;) are the single particle occupation numbers
e V = V[p|] ~ self-consistent field,
e Energy: EP¥T[p] =", F(ei)ei + ...
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Tight Binding Model

[Take S = id by considering

i ; Nt X Na
o Discretize: Hyp; = ey, H € (RNbXNb) T where Lowdin transform: 5_7/27-[51/2]

B )
Honan = [ 60a()] = 35+ V() dual)

{¢za}f.,vﬁl - atom-centered localised basis functions at ry

More details
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Tight Binding Model

[Take S = id by considering
Léwdin transform: S—T/23{S1/2]

Matrix entries

o Discretize: Hp; = ejvp;, H € (R"’bX'\’b)N"‘tXNb‘t where

B )
Honan = [ 60a()] = 35+ V() dual)

{¢ea}2]§1 - atom-centered localised basis functions at r,
o Assume: |Hyx| < e 0%k [rox = |re — rkl]
e Band energy: ETB =", F(e;)e; = Tr(HF(H))

More details
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Tight Binding Model

[Take S = id by considering

- . Nd Nd
o Discretize: Hyp; = ejtp;, H € (RMo>Mo) Mt \here Lowdin transform: S—T/23(51/?]

Matrix entries

B )
Honan = [ 60a()] = 35+ V() dual)

{¢ea}2]§1 - atom-centered localised basis functions at r,
o Assume: |Hyx| < e 0%k [rox = |re — rkl]
e Band energy: ETB =", F(e;)e; = Tr(HF(H))

p=cr
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Interatomic potentials:
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Interatomic potentials:
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Example: Classical interatomic potential for Si:

Stillinger—Weber:
Ey(r) = ZA(Br[kp — r[kq) fa(ro) + Z )\(cosekmn + %)zfa(rmk)vfa(rm,,)”’

k#£L k,m,n:
te{k,m,n} Stillinger, Weber. Phys. Rev. B 31 (1985)
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Example: Classical interatomic potential for Si:

Stillinger—Weber:

E(r) =Y ABry? — g h(ra) + Y A(c08Omn + 1) fa(rmk) ol rinn)
k#£L k,m,n:
te{k,m,n} Stillinger, Weber. Phys. Rev. B 31 (1985)

Overall, the most satisfactory parameter set thus far
discovered is the following:

A=7.049556277, B=0.6022245584,
p=4, ¢g=0, a=1.80, (2.7)
A=21.0, y=1.20.
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Example: Classical interatomic potential for Si:

Stillinger—Weber:

Eg(r) = ZA(BI‘ka — r[kq) fa(rgk) +
ke

Not systematically improvable...

Machine Learning:

Eg(r) = Eg(r; 9)

universal approximator

D

k,m,n:
te{k,m,n}

A( cos Okmn + %)2fa(fmk)7fa(rmn)7

Stillinger, Weber. Phys. Rev. B 31 (1985)
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Example: Classical interatomic potential for Si:

Stillinger—Weber:

Ey(r) = Z A(Br[kp — r[kq) fa(ro) + Z )\(cos Oumn + %)zfa(rmk)vfa(rm,,)”’
k40 k,m,n:
7 EE{T,I‘Z,n}

Stillinger, Weber. Phys. Rev. B 31 (1985)
Not systematically improvable...

Machine Learning:

Ei(r) = E/(r;0) Behler, Parrinello. Phys. Rev. Lett. 98 (2007)

neural network
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Example: Classical interatomic potential for Si:

Stillinger—Weber:

Ey(r) = ZA(Br[kp — r[kq) fa(ro) + Z )\(cosekmn + %)zfa(rmk)vfa(rm,,)”’
k#£L k,m,n:

te{k,m,n} Stillinger, Weber. Phys. Rev. B 31 (1985)

Not systematically improvable...
Machine Learning:

Ei(r) = E/(r;0) Behler, Parrinello. Phys. Rev. Lett. 98 (2007)

Bartok, Kondor, Csanyi. Phys. Rev. Lett. 104 (2010)
kernel method
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Example: Classical interatomic potential for Si:

Stillinger—Weber:

_ _ 2
Eo(r) = ZA(Brgkp — rgkq) fa(ro) + Z )\(cosekmn + %) fa( k)Y Fa(Fmn) Y
k#£L k,m,n:
te{k,m,n} Stillinger, Weber. Phys. Rev. B 31 (1985)
Not systematically improvable...

Machine Learning:

i Behler, Parrinello. Phys. Rev. Lett. 98 (2007)

Ey(r) = Ei(r; 0 : y

o(r) «(r:0) Bartok, Kondor, Csanyi. Phys. Rev. Lett. 104 (2010)
symmetric polynomials Braams, Bowman. Int. Rev. Phys. Chem. 28 (2009)

Shapeev. Multiscale Model. Simul., 14 (2016)
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Example: Classical interatomic potential for Si:

Stillinger—Weber:

_ _ 2
Eo(r) = ZA(Brgkp — rgkq) fa(ro) + Z )\(cosekmn + %) fa( k)Y Fa(Fmn) Y
k#£L k,m,n:
te{k,m,n} Stillinger, Weber. Phys. Rev. B 31 (1985)
Not systematically improvable...

Machine Learning:

i Behler, Parrinello. Phys. Rev. Lett. 98 (2007)

Ey(r) = Ei(r; 0 : y

Z( ) Z( ' ) Bartok, Kondor, Csanyi. Phys. Rev. Lett. 104 (2010)
Atomic cluster expansion Braams, Bowman. Int. Rev. Phys. Chem. 28 (2009)

Shapeev. Multiscale Model. Simul., 14 (2016)
Drautz. Phys. Rev. B 100 (2019)
Dusson et al. J. Comp. Phys. 454 (2022)

8/41



Journal of Computational Physics 454 (2022) 110946

Machine Learned IPs (M LI PS) Atomic cluster expansion: Completeness, efficiency and
stability *

Geneviéve Dusson ®*, Markus Bachmayrb, Gabor Csanyi €, Ralf Drautz ¢,
Simon Etter €, Cas van der Oord ¢, Christoph Ortnerf
ACE
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Journal of Computational Physics 454 (2022) 110946

Machine Learned IPs (M LI PS) Atomic cluster expansion: Completeness, efficiency and
stability *

Geneviéve Dusson ®*, Markus Bachmayrb, Gabor Csanyi €, Ralf Drautz ¢,
Simon Etter €, Cas van der Oord ¢, Christoph Ortnerf

“All interatomic potential models make various (often ad hoc) assumptions on the PES
regarding low-rank structures and locality of interactions. In general, one aims to represent a
complex fully many-body PES E (exactly or approximately) as a combination of “simple”
components, e.g., low-dimensional or low-rank. Here, we shall assume that E can be written in

the form of a body-order expansion,

J
E({r,....r;}) = Z Eo({roc}use)

{=1

Eo({ructuze) = Vo + Z Vi (re) + Z Vo (Forys Fo) + -+ + Z Vn (Ferys - - Feky) s
k ki <k ki <---<ky
(21)

with ry = r, — ry, Vo € R and N € N being the maximal order of interaction.”
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© Locality
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Locality: Spatial Decomposition Interatomic potentials

EP(r)=>" EP ({ruc}ize: 0)
¢
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Locality: Spatial Decomposition Interatomic potentials

o Recall: E(r) = Z EP ({rex}ze; 0)
¢

ETB(r Z F(e Tr(HF(H)) = > [HF(H)],
l
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Locality: Spatial Decomposition Interatomic potentials

o Recall: E"(r) = Z E” ({roctze; 0)
¢

ETB(r ZF r(HF(H)) =D [H

L

@ Define the local observables as

EZTB(r) = [HF(H)]M
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Locality: Spatial Decomposition Interatomic potentials

o Recall: E"(r) = Z E” ({roctkze; 0)
¢

ETB(r ZF r(HF(H)) =D [H

| |
_ dz
:%ﬁzF(z)[(z—?—[) 1}66% T

= / xF (x)dDy(x)
R

@ Define the local observables as
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Locality: Spatial Decomposition

Tight-binding Interatomic potentials
ETB(r) = Z [HF(,H)]M = Z EZTB(r) EIP Z {rfk}rek<rcut)
¢ ¢
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Locality: Spatial Decomposition

Tight-binding Interatomic potentials
ETB(r) = Z [HF(,H)]M = Z EZTB(r) EIP Z {rfk}rek<rcut)
¢ ¢
8EZTB(,‘) < Ce—’l]rgk
ory -

n > 0 depends on:
@ locality of H,
e analyticity of z — zF(z),
@ spectrum o(H).
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Locality: Spatial Decomposition

Tight-binding Interatomic potentials
ETB(r) = Z [HF(H)]gg = Z EZTB(r) EIP Z {rfk}rek<rcut)
¢ ¢

< Ce_n”ék

OE5(r)
8";(

n > 0 depends on:
@ locality of H,

e analyticity of z — zF(z), T
@ spectrum o(H). E/B = 7{ zF(z)[(z — ’H)_l]adfz.
[Chen, Ortner. Multiscale Model. Simul., 2016] & 27

[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018]
[Ortner, JT, Chen. ESAIM: M2AN, 2020] - estimates for point defects



“Proof"”: Locality Estimates

Theorem:

laEeTB(”)

< Ce "'k
ory -

1 > 0 depends on:
@ locality of H,
e analyticity of zF(z),

@ spectrum o(H).
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“Proof"”: Locality Estimates

Theorem:

OEB(r) _10H(r) 1] dz 18
e _72 ()2 -7 -7 o ’8Ef9r'() -

K

1 > 0 depends on:
@ locality of H,
e analyticity of zF(z),

@ spectrum o(H).
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“Proof”: Locality Estimates

Theorem:

OEB(r) _1OH(r) 1] dz 18
e _7€ ()2 -7 -7 o laEgr() -

K

Resolvent Estimates: Sketch for NN Hamiltonians _
1 > 0 depends on:

Suppose Hyx = 0 for all rp > 1.

Then, [HN]sk = 0 for all r;x > N and ® locality of 7,

@ analyticity of zF(z),

‘(Z - H)@ll = P/Teigm } [(Z —H)' - PN(’H)]M‘ e spectrum o(H).

< pmin [l =7 = Pull e oy

—N —Vrek
<e <e

where  ~ dist(z, o(H)).

[pictures] 14/41



e Body-ordered approximation
@ Linear schemes
@ Nonlinear schemes
@ Examples
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Body-ordered approximations Interatomic potentials

E®(r) = Y EF(r:6)
l

E; - short—reﬁged & "simple”
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Body-ordered approximations

Locality: E¢(r) = Eo({rok}rypcrons) + O(e7eut)
In practice, E; is still high-dimensional
Aim: Reduce the dimensionality further

Interatomic potentials
E"(r) = Y E(r:6)
¢

E; - short—reﬁged & "simple”
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Body-ordered approximations Interatomic potentials

EP(r) = 3" EP(r;6)
Locality: Eg(r) = Eo({rix}trp<ron) + O(e7emt) zg:
In practice, E; is still high-dimensional

. i ) ) E; - short—reﬁged & "simple”
Aim: Reduce the dimensionality further

Body-ordered approximation:

Eo(r) = Vot ) Va(ru)+ Y ValFug, o)+ -+ Y Vn(fokgs - - s Foky)
kAL kn koL P
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Body-ordered approximations Interatomic potentials

EP(r) = 3" EP(r;6)
Locality: Eg(r) = Eo({rix}trp<ron) + O(e7emt) zg:
In practice, E; is still high-dimensional

. i ) ) E; - short—reﬁged & "simple”
Aim: Reduce the dimensionality further

Body-ordered approximation:

Eo(r) = Vot ) Va(ru)+ Y ValFug, o)+ -+ Y Vn(fokgs - - s Foky)
kAL kn koL P

“In view of the fact that the Si crystal consists of atoms held
in place by strong and directional bonds, it seems reasonable
at first sight that the corresponding ® could be approximated
by a combination of pair and triplet potentials, Vi and V,.”
— Stillinger, Weber. Phys. Rev. B 31 (1985)
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Body-ordered approximations Interatomic potentials

EP(r) = 3" EP(r;6)
Locality: Eg(r) = Eo({rix}trp<ron) + O(e7emt) zg:
In practice, E; is still high-dimensional

. i ) ) E; - short—reﬁged & "simple”
Aim: Reduce the dimensionality further

Body-ordered approximation:

Eo(r) = Vot ) Va(ru)+ Y ValFug, o)+ -+ Y Vn(fokgs - - s Foky)
kAL kn koL P

“In this so-called many-body expansion of ®, it is usually believed that the

series has a quick convergence, therefore, the higher moments may be
neglected.”

— Haliciogli, Pamuk, Erkoc. Phys Status Solidi B 149 (1988)
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Body-ordered approximations Interatomic potentials

EP(r) = 3" EP(r;6)
Locality: Eg(r) = Eo({rix}trp<ron) + O(e7emt) zg:
In practice, E; is still high-dimensional

. i ) ) E; - short—reﬁged & "simple”
Aim: Reduce the dimensionality further

Body-ordered approximation:

Eo(r) = Vot ) Va(ru)+ Y ValFug, o)+ -+ Y Vn(fokgs - - s Foky)
kAL kn koL P

“...the many-body potentials in general exhibit a rather slow convergence.”

“It is sometimes argued that a potential expansion converges only slowly
with respect to the order of the potentials and is thus impractical for use
in molecular dynamics simulations.”

— Drautz, Fahnle, Sanchez. J. Phys. Condens. Matter 16 (2004)
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Body-ordered approximations Interatomic potentials

EP(r) = 3" EP(r;6)
Locality: Eg(r) = Eo({rix}trp<ron) + O(e7emt) zg:
In practice, E; is still high-dimensional

. i ) ) E; - short—reﬁged & "simple”
Aim: Reduce the dimensionality further

Body-ordered approximation:

Eo(r) = Vot ) Va(ru)+ Y ValFug, o)+ -+ Y Vn(fokgs - - s Foky)
kAL kn koL P

“The convergence of the expansion is slow and, for example,
for bulk metals potentials Vi up to K > 15 are required.”

— Drautz. Phys. Rev. B 99 (2019)
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Body-ordered approximations Interatomic potentials

E®(r) = Y EF(r:6)
l

E; - short—reﬁged & "simple”

Locality: E¢(r) = Eo({rok}rypcrons) + O(e7eut)
In practice, E; is still high-dimensional
Aim: Reduce the dimensionality further

Body-ordered approximation:

Eo(r) = Vot ) Va(ru)+ Y ValFug, o)+ -+ Y Vn(fokgs - - s Foky)
kAL kn koL P

“Incorporating environment information leads to exponential
convergence” = replace V,, with V,y
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Body-ordered approximations

Main idea: Polynomials are body-ordered:

[H"ee = Z HeoyHoyy - He, 10 Er=e(H)y = f&‘dDg
Gt 1

[“spatial correlations”, “moments” (H")g = [ x"dDy(x)]
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Body-ordered approximations

Main idea: Polynomials are body-ordered:

[H"ee = Z HeoyHoyy - He, 10 Er=e(H)w = fEdDg
Gt 1

[“spatial correlations”, “moments” (H")g = [ x"dDy(x)]

Suppose ¢ =~ ¢y where ey € Py,
Then, EKN = en(H)w

is a body-ordered

approximation to E;

Il
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Linear schemes: E}Y = en(H)uw Recall:

— N p—
Idea #1: Upper Bounds |EZ E ‘ < lle EN”L""(U(?'l))
@ Finite temperature (T > 0): Chebyshev projection
2 [SVES +ingt
‘EE_EZN‘ SM -N #Yﬁ 8y, x=a+b

-1

where F is analytic on &,.

[Proof: Chebyshev coefficients decay exponentially o<1

depending on region of analyticity]

\

p-ing
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Linear schemes: E}Y = en(H)uw Recall:

— N p—
Idea #1: Upper Bounds |EZ E ‘ < lle €N”L°°(U(H))
@ Finite temperature (T > 0): Chebyshev projection

2 E|l] oo +im
\Ee—EgN\ < I HL_igx) N < Ce=cTN ke £

8y, x=a+b

where F is analytic on &,.

[Proof: Chebyshev coefficients decay exponentially Um) st

depending on region of analyticity]

X
e Insulators (g > 0): Jep s.t. [Hasson 2007] p—inp!
N
N C 2 — g F=1 F=0
B — E| < — —
VN\2+¢g

where g is the spectral gap.

[Symmetric gap] 18741
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X
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- . EN . .
Linear schemes: E;" = en(H)w Recall:

Idea #2: Asymptotic bounds |Eg — EgN‘ < sup le(z) —en(2)]
z€o(H)

Interpolation nodes: Xy = {XJ}JN:o

Let ey = Ix,e polynomial interpolation of € on Xy
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Linear schemes: E}Y = en(H)uw Recall:

Idea #2: Asymptotic bounds |Eg EN ‘ < sup le(z) —en(2)]
z€o(H)

Interpolation nodes: Xy = {XJ}JN:o

Let ey = Ix,e polynomial interpolation of € on Xy

Equilibrium measures

Given X C R, there exists an equilibrium measure wy such that

_X_[ — wy — H < e~ 'YNN

'MZ

ENHLOO(Z)

and v* = Nlinoom is optimal.
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Linear schemes: E}Y = en(H)uw Recall:

Idea #2: Asymptotic bounds |Eg EN ‘ < sup le(z) —en(2)]
z€o(H)

Interpolation nodes: Xy = {XJ}JN:o

Let ey = Ix,e polynomial interpolation of € on Xy

Equilibrium measures

Given X C R, there exists an equilibrium measure wy such that

N
Z mx)—er = e Sa

ENHLOO(Z)
and v* = Nlin Y is optimal. Example: Chebyshev nodes

dW[ 11]( ) 1\/%dX.
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Theorem (JT, Chen, Ortner (2022))

There exists a linear ©p: RN — R such that
|E(r) — On(Hees - - [HM]ee)| < Cem N
where limy_coyn =7 >0, and y~g+ T.

However,

o Different ©p for different phases of the material

o Defects affect the convergence rate

[Here, ©n (Hee, - - ., [HV]e) is body-ordered]
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Idea #3: Nonlinear schemes

@ Recall, local density of states Dy is a (positive) measure
supported on o(H) and satisfying

e(H)w = /EdDe
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@ Recall, local density of states Dy is a (positive) measure
supported on o(H) and satisfying

e(H)w = /EdDe
@ ldea: “Method of moments”. Find Dév such that
[H" e = /x"dDéV(x) (n=0,1,...,N) — EN(r) = /ngEN,
@ Then

|Eo(r) — EN(r)| = min

eNEPN

/ (e—en)d(De — Dé\l)‘
< ||D¢ — DY ||rv SA”“EigN e — E’VHLOO(U(H)USHPP(DéV))

[Py = polynomials degree N]
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Linear schemes: Nonlinear schemes:

@ Chebyshev projection e Maximum entropy method?
— Kernel polynomial method? @ Recursion method3: spectral measure

@ Newton—Cotes quadrature corresponding to truncated
(equispaced nodes) tridiagonalisation of H

e Clenshaw—Curtis quadrature — bond order potentials®
(Chebyshev nodes) e Gauss quadrature

o General quadrature — linear-scaling spectral Gauss
(with vy —* Wy()) quadrature®

'[Silver, Roeder, Voter, Kress. J. Comput. Phys. 124 (1996)]
2[Mead, Papanicolaou. J. Math. Phys. 25 (1984)]

3[Haydock, Heine, Kelly. J. Phys. C 5 (1972), 8 (1975)]
*[Horsfield et al. Phys. Rev. B 53 (1996)]

®[Suryanarayana et al. J. Mech. Phys. Solids 61 (2013)]
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However,

@ Different ©p for
different phases of
the material

Theorem (JT, Chen, Ortner (2022))

There exists a linear ©p: RN — R such that

|Eo(r) — On(Hegs - - [H o) | < Cem N _ _
@ Eigenvalues in the
where limy_ooyn =7 >0, and y~ g+ T. gap affect the
convergence rate
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However,
@ Different ©p for
different phases of
the material

Theorem (JT, Chen, Ortner (2022))

There exists a linear ©p: RN — R such that

’Eé(r)*@N(H(@,...,[’HN]M)‘ < Ce— N . |
@ Eigenvalues in the

where limy_ooyn =7 >0, and y~ g+ T. gap affect the
convergence rate

Theorem (JT, Chen, Ortner (2022))

Fix N odd. There exist U C CN and an analytic function
©n: U — C such that

|Eo(r) — On(Hee, - - -, [HV]ee)| < Cem™N

g = gap in the essential
spectrum

where limy_ ooy =10 >0, andn~ g+ T.
Now,

@ Op is a “universal” nonlinearity

o Eigenvalues in the gap do not affect the convergence rates

23 /41



e Polynomial Approximation
@ Logarithmic potential theory
@ Schwarz—Christoffel mappings
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Polynomial Approximation

Asymptotically optimal rates:
General X = o(H) with T >00r g >0

25/41



Polynomial Approximation

Asymptotically optimal rates:
General X = o(H) with T >00r g >0
e X = {Xj}jN:(J — interpolation nodes

25/41



Polynomial Approximation

Asymptotically optimal rates:

General X = o(H) with T >00r g >0
e X = {Xj}jN:(J — interpolation nodes
o Ixe € Py with Ixe(xj) = (X))

25/41



Polynomial Approximation
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General X = o(H) with T >00r g >0
e X = {Xj}jN:O — interpolation nodes
o Ixe € Py with Ixe(xj) = (X))

Hermite Integral formula

Let € contour encircling X U {x},

x) €(z)
=) fﬁ Z—X27TI

where {(x) = HJZO(X — Xj) is the node polynomial
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Polynomial Approximation

Asymptotically optimal rates:

General X = o(H) with T >00r g >0
e X = {Xj}jN:(J — interpolation nodes
o Ixe € Py with Ixe(xj) = (X))

Hermite Integral formula

Let € contour encircling X U {x},

x) €(z)
=) fﬁ Z—X27TI

where {(x) = HJZO(X — Xj) is the node polynomial

Proof:
ﬁ'r(c;c;_H x—x.  Ux)/(x—x) % (x—z) 1 % (x)
S e — X Hk#(xj—xk [Thrj(z = Z—XJ27TI U(z) X—227TI
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Polynomial Approximation

@ Hermite Integral formula —

P
o 27rdlst( (7—[),(5) x€o(H),ze€€

{(x)

(2)

le(x) = Ixe(x)

where ((x) = HJ-NZO(X — xj) (node polynomial),

@ Goal: Understand the asymptotic
behaviour of

’ Ux)
(z)

@ How to choose X?

as N — oo
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Link to Logarithmic Potential Theory

@ Define vy = % J,-V:o dx; and note

log Ug 1} Zlog|x x| = /Iog|x t| dvn(t)
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Link to Logarithmic Potential Theory

@ Define vy = % J,-V:o dx; and note

1

1 1
log UE(X)|N} — NZIog|x—xj’ = /Iog|x t| dvn(t)
J
o If yy —=* v, then

: L _ U0 v - 1
Jim ()% = e where  UY(x) : / og T——du(¢)
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Link to Logarithmic Potential Theory

@ Define vy = % J,-V:o dx; and note

1 1
log UE(X)H/} — NZIog|x—xj’ = /Iog|x t| dvn(t)
J
o If yy —=* v, then

v 1
lim |€(x)\% —e V") where U”(x) = /Iog ——dv(t)
N—oo |X — |

@ body-order approx. «<— polynomial approx.
— )gm forx e o(H)and z € @
<— behaviour of U¥(x) — U"(z)
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/ U2 (x)dw(x) = / / log

o d! minimiser wy — equilibrium measure with
Vs = inf y(x) 1 € (—00, 00] — Robin’s constant
(3 = M(X) weak* compact and I Isc, ! = strict convexity)
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L . [Saff 2010]
@ > C C — compact approximation domain, 2

e Find w e M(X) [unit Borel measure, supported on X]
minimising the energy

1) = [ U(0de(x) = [ log = dult)du()

x =t

o d! minimiser wy — equilibrium measure with

Vs = inf y(x) 1 € (—00, 00] — Robin’s constant

(3 = M(X) weak* compact and I Isc, ! = strict convexity)
@ Frostman:

U“r(z) < Vs forze C
U“r(z) = Vs forzeX
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Jm i)

e Q: How to compute gx(z) = Vy — U¥=(z) > 07
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Link to Potential Theory

@ Frostman:

U(z) < Vs forzeC
U(z) = Vs forze X

@ Choose interpolation points asymptotically
distributed according to wy: for x € ¥ and z € ¥,

lim @
N—oo K(z)
e Q: How to compute gx(z) = Vy — U¥=(z) > 07

@ (Q: How to choose X to obtain this rate of approximation?)

1
V)] L e
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Link to Schwarz—Christoffel mappings

@ Frostman:

U“r(z) < Vs forzeC
U“r(z) = Vs forze X

@ Choose interpolation points asymptotically
distributed according to wy: for x € ¥ and z € ¥,

“(x)
(2)

1
v e_[VZ_U"-’Z(z)] — o 8(2)

lim
N—oco
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Link to Schwarz—Christoffel mappings

@ Frostman:

U“r(z) < Vs forzeC
U“r(z) = Vs forze X

@ Choose interpolation points asymptotically
distributed according to wy: for x € ¥ and z € ¥,

1
lim ’€(X) ! = e_[VZ—UWZ(Z)] — e—g):(z)
N—oo

{(2)

@ The function z — gy (z) satisfies
o Ags =00nC\ L,
e gr =0o0n%,
o gr(z) ~log|z| as z = o0
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Link to Schwarz—Christoffel mappings

@ Frostman:

U“r(z) < Vs forzeC
U“r(z) = Vs forze X

@ Choose interpolation points asymptotically
distributed according to wy: for x € ¥ and z € ¥,

i

@ The function z — gy (z) satisfies
o Ags =00nC\ L,
e gr =0o0n%,
o gr(z) ~log|z| as z = o0

1
Ve )] L e
N—oo

o ! solution to this Green's function problem
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Green's function problem

Define gs(z) := ReGx(z) where

Conformal mapping problem: G_13): C4 — Csit.

Find g5 s.t.
@ Ags =00onC\ L,
e gy(z) ~ log|z| as z — oo,

@ gs =0o0n%.

wy =T
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Green's function problem

Find g5 s.t.
Define gs(z) := ReGg(z) where o Ags =0onC\ ¥,
g-11)(z) =log |z +Vz+1vz —1]

e gs(z) ~log|z| as z — o0,

Conformal mapping problem: G_13): C4 — Csit. @ gs=0o0n1k.

wy =T

= = ’ 31/41



Y =[-1,a U]b,1] Green's function problem

Find g5 s.t.
Define gs(z) := ReGx(z) where o Agr =00onC\ X,
@ gs(z) ~ log|z| as z — o0,
@ gxs =0o0nX.
Gl-1,3]u[b,1]
N w = wy
. wi =0

21 22 & A 5
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Y =[-1,a]U[b, 1] Green's function problem

Find g5 s.t.
Define gs(z) := ReGx(z) where @ Ags =0onC\ L,
‘ (—2z3 ° ~ |
G 5 ac, gx(z) ~ log|z| as z — oo,
(-alule)(2) 1 VC+HIVE—av(-by( -1 @ gg=0on1k.

for some z3 € [a, b]

wy = T

G[—1,a]u[b,1]
H Wy = Wy
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How to choose the interpolation nodes?

o Fekete Sets [difficult]
minimise I over the space of measures of the form & Zszo dx;
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How to choose the interpolation nodes?

o Fekete Sets [difficult]

minimise I over the space of measures of the form & Zszo Ox
o Fejer sets

Consider X = Gy ({/7” No)
@ Leja sets

For X = {XJ}JN:O choose xy41 € arg maxycy Hj'V:O |x — Xj|

For X =[-1,1]:

@ Chebyshev nodes are asymptotically distributed according to the arcsine measure:

1 1
d(/J[_L]_](X) = ;7dx

— 2
1—x v
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How to choose the interpolation nodes?

o Fekete Sets [difficult]
minimise I over the space of measures of the form & Zszo Ox

o Fejer sets
Consider X = Gy ({/7” No)
@ Leja sets
For X = {XJ}JN:O choose xy41 € arg maxycy Hj'V:O |x — Xj|

For X =[-1,1]:

@ Chebyshev nodes are asymptotically distributed according to the arcsine measure:

1 1
d(/J[_L]_](X) = ;ﬁdx
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e’?)~1 with polynomials
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Conclusions

© E(r) =>4 Er)
o Local pieces — transferability
e QM/MM schemes: size of the QM region ~ 7
[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]
e Thermodynamic limit problems
[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018],
[Ortner, JT. Math. Model. Methods Appl. Sci., 2020]
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Conclusions

o E(r)=>_,Eur)
o Local pieces — transferability
e QM/MM schemes: size of the QM region ~ 7
[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]

e Thermodynamic limit problems
[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018],
[Ortner, JT. Math. Model. Methods Appl. Sci., 2020]

N
o Ey(r)=3 o Zglj,“,gn;,gg Van (’Ml’ cee rEZ,,)y
o e.g. Linear Atomic Cluster Expansion (ACE)
@ There exists ©p “universal” with

Ei(r) ~ On(o1,-... 0n)

where ¢, are linear body-ordered.
e Nonlinear ACE

@ Proofs: Polynomial approximation
37/41
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@ Analysis of bond-order potentials (BOP),
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@ (partial) Justification for linear-scaling spectral Gauss
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[Approximation of p = F (H[p]) with py = Fn(H[pn])]

@ Truncation operators and connection to divide-and-conquer
methods

Thank you for your attention!
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What we couldn’t prove (yet?):

@ Forces converge in the linear schemes

aEg 8E
8rk 6rk

e Vrtk o= N

But, this is a lot less obvious in the nonlinear schemes

True if Dy has “regular nt" root asymptotic behaviour':

3=

— eBsupp Dy (2)

Jir Iz 00

locally uniformly on C \ conv supp Dy

@ "Proof”
OE, OE)N
Gr,f or [ZZHPIHM((K e ’/l”]e mN o= re

n=0 /=0
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Self-consistency

e Want pj = F(H[p*])ﬁ,

e Approximate with py ¢ = Fy (H[pN])M
[where Fy is a body-ordered approximation of F]

e If p* is stable [linearisation is invertible], then there exist py
such that

lone —pyl S e ™

@ Can solve py ¢ = Fy (H[pN])M with the Newton iteration:

Pt = pl — (1= DFn(p) " (o' — Fn(H[p))
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Body-ordered approximations e(z) = zF(z)

Main idea: Polynomials are body-ordered:

[H"ee = Z HeoyHoyy - He, 10 Es=ec(H)w = fEdDg
Gt 1

[“spatial correlations”, “moments” (H")g = [ x"dDy(x)]

|Ee = EFX| = |[3) = en(¥)] |
< [le(H) — en(H) e

— sup |=(2) — =n(2)
z€o(H)
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Gt 1

[“spatial correlations”, “moments” (H")g = [ x"dDy(x)]

Suppose ¢ ~ ey where ey € Py,
Then, EN = en(H)w

53 bodyordered

approximation to E;
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Then, EN = en(H)w

53 bodyordered

approximation to E;

Claim: |Ee = E'| = |[(#) = en(#)] o]
aim: < le(H) — en(H)ll2—ye

N
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Spectrum of the Hamiltonian
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Spectrum of the Hamiltonian

L aw a al a al e
gy .o.o.o.ogo.ogc.q.n.o.q.
3’:'3':':':‘: z’: e
l { ol & ol >y
BB, a8, -4 8

Py Byt
% .’0'0'0'0'
..0.0.-.0.0
'0'0'0'.'0'0
PaPe®y®,

3...0 3...0.0 :,0.0.0
e e e e ey

{0: [rdef] < Ryee}  finite

sup
L: |rZ|>Rdef

|rlfief -l <d

39/41



Spectrum of the Hamiltonian: Insulators
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Spectrum of the Hamiltonian: Insulators

OE(r) < Ce—"Mrexl
! ory -
| Y
|
fe— S 00
d  u —~ l |
]
n~g
]
n(’J—/(rdEf“ — !
| ]| || 14—/ ) | |
I

12
Improved estimate:

v
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e Notation: (ry, Z;) position and species of atom ¢,
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(Kohn-Sham) Density Functional Theory

e Notation: (ry, Zy) position and species of atom /¢,

@ Schrodinger eq. ~~ Kohn—Sham equations
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(Kohn-Sham) Density Functional Theory

e Notation: (ry, Zy) position and species of atom /¢,

@ Schrodinger eq. ~~ Kohn—Sham equations

H S, = (— %A + Vesr(x; P))%(X) = Anthn(x),

R 07 X
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@ Schrodinger eq. ~~ Kohn—Sham equations

H S, = (— %A + Vesr(x; P))%(X) = Anthn(x),

R 07 X
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o Energy
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(Kohn-Sham) Density Functional Theory

e Notation: (ry, Zy) position and species of atom /¢,

@ Schrodinger eq. ~~ Kohn—Sham equations

WIS = (= 58+ Vanlip) J o) = A 900 = 0 FO) ()

R 07 X
Vet (x; p) '_/|X—y| Z|X—I’m| Vie(X; p),

o Energy
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DFT

@ Schrodinger eq. ~» Kohn—-Sham equations

Hszn = <_ EA + Veff(X p)>'¢n(x) = )\nwn(x)v Z F ‘wn
Ver(x; ) /|x v er—r ¥ Vaelip):
o Energy

Bl = S AnFO) — [ ) V()
+ Eeelp] + = // dd —ZZ/|X_r’dx+EZZ
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Spectrum of the Hamiltonian
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Spectrum of the Hamiltonian

L aw a al a al e
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BB, a8, -4 8

Py Byt
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..0.0.-.0.0
'0'0'0'.'0'0
PaPe®y®,

3...0 3...0.0 :,0.0.0
e e e e ey

{0: [rdef] < Ryee}  finite

sup
L: |rZ|>Rdef

|rlfief -l <d
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Spectrum of the Hamiltonian: Insulators

o(H(r)) = |
[ I [« I |
U(H(rdef)) — :

| (IO ]| [ |

12
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Spectrum of the Hamiltonian: Insulators

%(r) < Ce—Mrexl
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|
o(H(r)) = |
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Spectrum of the Hamiltonian: Insulators

< Ce—Mrexl

O.(H(rdef)) —
[ L0 ——————— ]
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I jdef
Ige
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Spectrum of the Hamiltonian: Insulators

OE(r) < Ce—Mrexl
ory -
|
o(H(r)) = |
| I < g > I |
I
n~g
U(H(rdef)) — :
L | | | | Hng>II (1 | |
|
" .
Improved estimate:
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SIAM Review (© 1999 Sociery fo Industrsland Applied Mthemtics

Vol. 41, No. 4, pp. 745-761

Green’s Functions for Multiply
Connected Domains via
Conformal Mapping*

Mark Embree ¥
Lloyd N. Trefethen 1§

Hlustration of the overconvergence phenomenon of Theorem 2(b) and Theorem 4. On the
same two-polygon region as in Figure 3, a polynomial p(z) is sought that approzimates the
values —1 on the hexagon and +1 on the square. For this figure, p is taken as the degree-29
near-best approzimation defined by interpolation in 30 pre-images of roots of unity in the
unit circle under the conformal map z = ®~1(w) (egs. (8) and (9)); a similar plot for the
exactly optimal polynomial would not look much different. The figure shows Rep(z) by a
blue-red color scale together with the polygons, the interpolation points, and the figure-8-
shaped critical level curve of the Green’s function. Not just on the polygons themselves, but
throughout the two lobes of the figure-8, Rep(z) comes close to the constant values —1 and
+1. Qutside, it grows very fast.
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E: U {{n,....0} cR} SR
Vo = E(0)
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E U, {{n.....0} CR} SR
Vo = E(0)
Vi(n) = E({n}) — E(D)

n
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E: U {{n,...., s} CR}} R
Vo = E(0)
Va(r) = E({r}) — E(0)
Vo(r,n) = E({n,rn}) — E({n}) — E({r})+ E(0)

v
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Vacuum cluster expansion

E: U {{r, ...} CR}} SR
Vo = E(0)
Vi(rn) = E{n}) — E(0)
Vo(ri, ) = E({n, n}) — E({n}) — E{r}) + E(0)

W(r,..om) = Y. ()N E(K)

Kg{rl 7777 rN}
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Vacuum cluster expansion

E: U {{rn.....,ns} CR3} =R
Vo = E(0)
Vi(rn) = E{n}) — E(0)
Vo(ri, ) = E({n, n}) — E({n}) — E{r}) + E(0)

W(r,..om) = Y. ()N E(K)

Kg{rl 7777 rN}
Then,

E({n,...,n}H) =~ Z Z NN S

n=0 j1<-<jn
Exact for N = J.
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Vacuum cluster expansion

E: U {{rn.....,ns} CR3} =R
Vo = E(0)
Vi(rn) = E{n}) — E(0)
Vo(ri, ) = E({n, n}) — E({n}) — E{r}) + E(0)

“An intuitive explanation for this

_ low convergence is that we are
Va(r,....m) = —)N-IKIE(K s &
wr.m) Z (1) (K) building an interaction law for a

KC{ri,., :
Clrm} condensed or possibly even
Then, crystalline phase material from
N )
clusters in vacuum where the
E({n,....r}) = Z Z ZIGATERN bonding chemistry is significantly
n=0j1<-<jn different.”

Exact for N = J.

Convergence? Rate of convergence? Not clear! il
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Vacuum cluster expansion

E: U {{rn.....,ns} CR3} =R
Vo = E(0) Replace V,, with V,n

Vi(rn) = E{n}) — E(0)
Vo(ri, ) = E({n, n}) — E({n}) — E{r}) + E(0)

“An intuitive explanation for this

_ low convergence is that we are
Va(r,....m) = —)N-IKIE(K s &
wr.m) Z (1) (K) building an interaction law for a

KC{ri,., :
Clrm} condensed or possibly even
Then, crystalline phase material from
N .
clusters in vacuum where the
E({n,....r}) = Z Z ZIGATERN bonding chemistry is significantly
n=0j1<-<jn different.”

Exact for N = J.

Convergence? Rate of convergence? Not clear! vill
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Numerical experiments: “defect-free”

Error

@ Approximation domain E; = [—1,—-0.2] U [0.2, 1]

10°

10°

10

10—10

— .. — Chehyshev projection: ¢ ™

— — = Predicted for Fy: eV

”.I'-"; — Ty F f" L>=(E,)
— [ = B
7 -

\"J.Mi:u

L>=(Ey)

20

40 60 80 100
Polynomial degree
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Numerical experiments: with defect

Error

@ Approximation domain E; = E; U [—0.06, —0.03]

1¢°

—4

10
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107

— -+ = Chebyshev projection: ¢
— — = Predicted for Ey: e” 1N
—.— Predicted for £y ¢ N

— 1P T P
—— |F? = o PP

[|F# - Pg H, x (Ey)

— f|1-’f I FPlap,

-x37IN

50
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Polynomial degree
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Maximum entropy method

e Fix [a, b] D o(H), maximise

5(P) ::—/ab [P(x) log P(x) dx+z/\ </

@ Leads to

N n .
Py (x) = e~ Zn-0nx s.t. first N moments

e Moreover, if {(H")s} is completely monotone, then 3!P.

P(x)dx — [H ]ee)
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Nonlinear schemes: Recursion method

o Let {pn} orthogonal polynomials with respect to Dy:

bn+1pnt1(x) = (X = an)pn(x) — bnpn-1(x) [Lanczos recursion]
define
ao b1
B _ . .
Tn = by = (/p,(x)xpj(x)dDg(x))OSIJSN,
b/\/ an
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Nonlinear schemes: Recursion method

o Let {pn} orthogonal polynomials with respect to Dy:

bn+1pnt1(x) = (X = an)pn(x) — bnpn-1(x) [Lanczos recursion]
define
ao b1
_ | b a _ . .
Tn = by = (/p,(x)xpj(x)dDg(x))OSIJSN,
b/\/ an

@ [H"se = [(Tn) oo for all n <2N +1,
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Nonlinear schemes: Recursion method

o Let {pn} orthogonal polynomials with respect to Dy:

bn+1pnt1(x) = (X = an)pn(x) — bnpn-1(x) [Lanczos recursion]
define
ao b1
_ | b a _ . .
Tn = by = (/p,(x)xpj(x)dDg(x)>OSIJSN,
b/\/ an

° [HH]M = [(TN)n]OO for all n <2N 41,
° thv — spectral measure of Ty s.t. EZN =¢e(Tn)oo
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Nonlinear schemes: Recursion method

o Let {pn} orthogonal polynomials with respect to Dy:

bn+1pnt1(x) = (X = an)pn(x) — bnpn-1(x) [Lanczos recursion]
define
ao b1
_ | b a _ . .
Tn = by = (/p,(x)xpj(x)dDg(x)>OSIJSN,
b/\/ an

° [HH]M = [(TN)n]OO for all n <2N 41,
° thv — spectral measure of Ty s.t. EZN =¢e(Tn)oo

N .
‘Eg(r) - EE (r)‘ = 2€2N+1”€]7f32N+1 H€ a €2N+1HL°°(U(H)USUPP(D1N))

v
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|E(r) — EM(r)| <2 inf

E2N+1 EP2N+1

e — eanga| Lo (o(H)Usupp(DY))
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If supp(Dy) N [a, b] = 0, then |supp(D)) N [a, b]| < 1

|Eo(r) — EN(r)| <2

ean+1€Pan+1

inf e = conal| joe (o rysupn(oM)

I,
~

—————————
————

estosssssssnssosssef- >
..............‘} —

Z—
eve
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o Let {p,} orthogonal polynomials with respect to Dy,
e Interpolate in X := {zeros of pyi1},
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Nonlinear schemes: Gauss quadrature

@ Let {p,} orthogonal polynomials with respect to Dy,

@ Interpolate in X := {zeros of pyi1},
o )Y =31 o tj(H)ue(x)),

Il
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Nonlinear schemes: Gauss quadrature

Let {pn} orthogonal polynomials with respect to Dy,
Interpolate in X = {zeros of ppny1},

E) = Ym0 i(H)ee(x),

Can show w; == {;(H)e > 0and 3w =1 =

n
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Nonlinear schemes: Gauss quadrature

Let {pn} orthogonal polynomials with respect to Dy,
Interpolate in X = {zeros of ppny1},

E) = Ym0 i(H)ee(x),

Can show w; == {;(H)e > 0and 3w =1 =

|Eo(r)— EN(r)| <2 inf

ean+1E€EPaN+1 H€ 2N+ HLOO(G(H)USHPP(D?’»
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Nonlinear schemes: Gauss quadrature

Let {pn} orthogonal polynomials with respect to Dy,
Interpolate in X = {zeros of ppny1},

EN =30 Gi(H)ees(x),

Can show wj == {j(H)e > 0and > ;w; =1 =

) “nice enough”

|Eo(r)— EN(r)| <2 inf

ean+1€EPan+1 H€ 2N+ HLOO(‘T(H)USHPP(D?/))
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Nonlinear schemes: Gauss quadrature

Let {pn} orthogonal polynomials with respect to Dy,
Interpolate in X = {zeros of ppny1},
, N
EN =30 Gi(H)ees(x),
Can show w; == {;(H)e > 0and 3w =1 =

|Eo(r)— EN(r)| <2 inf

ean+1E€EPaN+1 H€ 2N+ HLOO(G(H)USHPP(D?))

@ Can show that EKN = @(’Hgg, e (H2N+1)gg) where
©: C2N+1 _, C is analytic in open neighbourhoods of
"admissible moment sequences”

Vi
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Numerical Experiments

C
25

—band structure

------ Fermi energy

|| = spectrum of a homogeneous lattice
= spectrum with an interstitial
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[Ortner, JT, Chen. ESAIM: M2AN, 2020] !
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Numerical Experiments

25 —band structure
\/ ------ Fermi energy
20 - || = spectrum of a homogeneous lattice
45 = spectrum with an interstitial
% i
@ 107 " ¢ ® ©® homogeneous lattice
3 0. ° o defect, |y¢|small
g 5 ] 107} o o defect, |v¢|large
5 [ .. 2
o 0 —
@ z
5 | =
SR
-0 \ | a
K !
107
0

[Ortner, JT, Chen. ESAIM: M2AN, 2020] (a) Decay of site energy derivatives. "



Atomic Cluster Expansion (ACE)

E. D{{rl,...,rj}cR3}—>R

J=0

rs
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Atomic Cluster Expansion (ACE)

E. D{{rl,...,rj}cnza3}—>R

J=0

n
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Atomic Cluster Expansion (ACE)

E: D{{rl,...,rj}cnza3}—>R © o

J=0 ©

,4
o
/ o
I
Qr = {er}l @ @ Permutations

o™ e Qe 0(3)
o
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Atomic Cluster Expansion (ACE)

“In general, one aims to represent a complex fully
many-body PES E (exactly or approximately) as a

oo
. 3

E: U {{rl’ Y rJ} CR } —R combination of ‘simple’ components, e.g.,

J=0 low-dimensional or low-rank”

— Bachmayr et al. J. Comp. Phys. 454 (2022)
rs
r3. o r
[
r={rj} @ Permutations
.r6 ° Q € 0(3)
L
[ ry
@,
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Atomic Cluster Expansion (ACE)

“In general, one aims to represent a complex fully
many-body PES E (exactly or approximately) as a

oo
. 3
E: U {{rl’ Y rJ} CR } —R combination of ‘simple’ components, e.g.,
J=0 low-dimensional or low-rank”

E— Z E, ({rfk}k;éﬁ) — Bachmayr et al. J. Comp. Phys. 454 (2022)
¢

" & -
$ ’ W
rn» .
- @ Permutations

\
Ex({rix}rz1) \ r15,, -
3\ V4 -
\ V4 ““m o Qe 0(3)
AIRSE A
- ~
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Atomic Cluster Expansion (ACE)

. * 3
E. JL_JO{{rl,...,rJ}C]R }—>R

E=> E({ru}tire)
7

Ex({rc}ez1) = \
\

-

e,

"

PR e
.
.

“In general, one aims to represent a complex fully
many-body PES E (exactly or approximately) as a
combination of ‘simple’ components, e.g.,

low-dimensional or low-rank”
— Bachmayr et al. J. Comp. Phys. 454 (2022)

@ Permutations

4 >
e Qe 0(3)

@ cut-off radius
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Atomic Cluster Expansion (ACE)
o “In gege:,ja/, 'glr:l; ,aEin(1s to rlepresent a c'omp/;:'x) fully
. 3 many-boay exactly or approximately) as a
E: U {{rl’ Y rJ} CR } —R combination of ‘simple’ components, e.g.,
J=0

low-dimensional or low-rank”
— Bachmayr et al. J. Comp. Phys. 454 (2022)

E=> E({ru}tire)
7

RS \ A
@ Permutations

Ex({rin}rp<ren) & \ 3
’w ‘-_‘ () Q c 0(3)

13 :
S : @ cut-off radius

4
V4

.
.
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@ Recall: (ry, Z;) (position, species) of atom £.
Kohn—Sham eqs: HXS4, = A\,
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Tight Binding

@ Recall: (ry, Z;) (position, species) of atom £.

Kohn-Sham eqgs: HXSt, = \yibn,

@ Project to a "basis” of local orbitals {¢y,}

i.e. wn(X) = Zfa Cn,€a¢€a(x)
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Tight Binding

@ Recall: (ry, Z;) (position, species) of atom £.
Kohn—Sham eqgs: ’HKsl/J,, = App,

@ Project to a "basis” of local orbitals {¢y,}

i.e. wn(X) = Zfa Cn,€a¢€a(x)

HC, = MG, where Hea kb = /@aHKSéf)kb

[assuming overlap matrix is the identity]
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Tight Binding
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Kohn—Sham eqgs: ’HKsl/J,, = App,

@ Project to a "basis” of local orbitals {¢y,}

i.e. wn(X) = Zfa Cn,€a¢€a(x)

HC, = MG, where Hea kb = /WaHKSéf)kb

[assuming overlap matrix is the identity]

o Tight binding assumption: |’Hgk| < hge™ 70 "tk

v
40/ 41



Tight Binding

@ Recall: (ry, Z;) (position, species) of atom £.
Kohn—Sham eqgs: ’HKsl/J,, = App,

@ Project to a "basis” of local orbitals {¢y,}

i.e. wn(X) = Zfa Cn,€a¢€a(x)
HCy =Gy where  Hpppp = /¢£aHKS¢kb

[assuming overlap matrix is the identity]

o Tight binding assumption: |’Hgk| < hge™ 70 "tk
@ Band energy:

E(r) =" XnF(Xn)

[More generally, O(r) =", o(An)]
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Tight Binding

@ Recall: (ry, Z;) (position, species) of atom £.
Kohn—Sham eqgs: ’HKsl/J,, = App,

@ Project to a "basis” of local orbitals {¢y,}

i.e. 1/),,(X) = Zfa Cn,€a¢€a(x)

HC, = MG, where Hea kb = /¢£aHKS¢kb

[assuming overlap matrix is the identity]

o Tight binding assumption: |’Hgk| < hge™ 70 "tk

@ Band energy:
E(r) =" XnF(Xn) F = .

[More generally, O(r) =", o(An)]
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Tight Binding

@ Recall: (ry, Z;) (position, species) of atom £.
Kohn—Sham eqgs: ’HKsl/J,, = App,

@ Project to a "basis” of local orbitals {¢y,}

i.e. 1/),,(X) = Zfa Cn,€a¢€a(x)

HC, = MG, where Hea kb = /¢£aHKS¢kb

[assuming overlap matrix is the identity]

o Tight binding assumption: |’Hgk| < hge™ 70 "tk

@ Band energy:
E(r) =" XnF(Xn) FB —

[More generally, O(r) =", o(An)]
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Atomic Cluster Expansion

. * 3
E. JL_JO{{rl,...,rJ}C]R }—>R

E = Z EZ ({rfk}rgk<fcut)
J4

Eq

n
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[
. it )8
J=0 o
E= Z EZ({rek}rek<rcut) o
¢ n®
[

Ei =

I
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Atomic Cluster Expansion

. * 3
E. JL_JO{{rl,...,rJ}C]R }—>R

E = Z E, ({rfk}rek<fcut)
V4

Vi(r2)

5]
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Atomic Cluster Expansion

E; =

. * 3
E. JL_JO{{rl,...,rJ}C]R }—>R
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Atomic Cluster Expansion

. * 3
E. JL_JO{{rl,...,rJ}C]R }—>R

E = Z EZ ({rfk}rgk<fcut)
J4

E1 = V() + Z Vl(rlk)

. - .
-----------

5]

Vi(ra)
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Atomic Cluster Expansion

. * 3
E. JL_JO{{rl,...,r_/}C]R }—>R

E = Z EZ ({rﬂk}rgk<fcut)
J4

E1 = V() + Z Vl(rlk)

. - .
-----------

-
.* .,

.....

Vo(riz, n3)
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Atomic Cluster Expansion

. * 3
E. JL_JO{{rl,...,r_/}C]R }—>R

E = Z EZ ({rﬂk}rgk<fcut)
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Atomic Cluster Expansion

. * 3
E. JL_JO{{rl,...,r_/}C]R }—>R

E = Z EZ ({rﬂk}rgk<fcut)
J4

E1 = V() + Z Vl(rlk)

. - .
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Atomic Cluster Expansion

V3(ri2, n3, ra)

E: G {{r17~~7rJ} CR3} - R
J=o0
E=> E({rm}ru<re)
‘

Ei = Vo + E Vi(rik) + E Vo(rij, rk)
------ . JCLETN Kewnu, Lemea, Lene, j<k TN Lene,
.‘ - * - - * - * - * A4 * -
* * - - - - - * -
. . . . ‘. Ad Ad N ‘e .. .
= (s - .
. . +. \ 1 + H '
;
e o . * . * e % '.‘¢ *
‘e . e . . . ‘Y . . . R4 . .
----------------- . ¢ Teaast* Thaas®

-----
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Atomic Cluster Expansion

. * 3
E. JL_JO{{rl,...,r_/}C]R }—>R

E = Z EZ ({rﬂk}rgk<fcut)
J4

n
E = Voo + > Va(rw) + > Vo(njng) + Va(rz, ns,na)
JUETTTN . JRLIER Kaweu, Lemma, e J<k ieeo, L estreal e
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Atomic Cluster Expansion

. * 3
E. JL_JO{{rl,...,r_/}C]R }—>R

E = Z EZ ({rﬂk}rgk<fcut)
J4

r
E = Voo + > Va(rw) + > Vo(njng) + Va(rz, ns,na)
e e, PR e, e e, e,
= 7 . k R Iy \ { +i k{
: A, H ‘

N Teaast * Teaas® * Teaast * Teaas® M i ¢ AR * IRT ¢ IRT ¢
= Z Z VN(rllU 7r]-JN)

N=0j1,...jn I



E: G {{rl,...,rJ}C]R3}—>R

J=0
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E: G {{fl sy C R3} _ g @ High dimensional,
/=0 e Many-body

I
40/41



E: [j {{fl sy C R3} _ g @ High dimensional,
/=0 e Many-body

E=> E({ru}exe)
7

"
40/41



Atomic Cluster Expansion

E: G {{fl s} C R3} _ g @ High dimensional,
J=0 @ Many-body

@ V) defined on Euclidean space
(fixed dimension)

N
Eg:Z Z Vn(res - - - rejy)

N=0j1<--<jn

E=> E({ru}exe)

14

v
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Atomic Cluster Expansion

E: G {{fl s} C R3} _ g @ High dimensional,
J=0 @ Many-body

@ V) defined on Euclidean space
(fixed dimension)

N
Eg:Z Z Vn(res - - - rejy)

N=0j1<--<jn

E=> E({ru}exe)

¢

Approximate R = (r,...,ry) — Vy(R) where
e Vn(R) =0 if max|rj| > reut,
o Vy(QR) = Vy(R) where QR = (Qr));, Q € O(3),
o Viy(oR) = Vi(R) where oR = (r,()}.;, o € Sy
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Atomic Cluster Expansion

E: G {{fl s} C R3} _ g @ High dimensional,
J=0 @ Many-body

@ V) defined on Euclidean space
(fixed dimension)

N
E, = 2{: 2{: Vn(res - - - rejy)

E=> E({ru}exe)

¢

N=0 j1<--<jn
Approximate R = (r,...,ry) — Vy(R) where
e Vn(R) =0 if max|rj| > reut,
o Vy(QR) = Vy(R) where QR = (Qr));, Q € O(3),
o Viy(oR) = Vi(R) where oR = (r,()}.;, o € Sy
Computationally efficient? For J > A/, naively scales like (J{/) ~ JWA{ v
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ACE: Approximate Viy(R) where R = (ry,...,ry) € R3V

e 1-body basis: ¢pm(r) = Pa(r)Y/"(F),
o N-body basis: Gnim(r1, -, rn) =TIy Gnym; (1)
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e 1-body basis: ¢pm(r) = Pa(r)Y/"(F),
o N-body basis: Gnim(r1, -, rn) =TIy Gnym; (1)

@ Restrict V) to
° VNESpan{(b,,/m:n,IENN,mGZNs.t. —/J-Smjglj} N

{reR3: |r| >}V

® {Pn(r)}n — linearly
independent

Il
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ACE: Approximate Viy(R) where R = (ry,.

A rN) e R3N
e 1-body basis: ¢pm(r) = Pa(r)Y/"(F),
o N-body basis: Gnim(r1, -, rn) =TIy Gnym; (1) o Restrict Vy to
o Vi € span{¢nm: n, I %N’V,m €eZNst. — [ <m; <} (reR®: |r| > o}V
@ Approximate Viy with Viy = > 1 Coim®@nim o [Po(r)}n - linearly
n n
independent

n
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ACE: Approximate Viy(R) where R = (ry,...,ry) € R3V

1-body basis: ¢nim(r) = Pa(r)Y/"(F),
. N

N—body basis: gb,,,m(rl, ey r/\/) = Hj:l anj/jmj(!:,')
Vi € span{dpm: n,l e NN me ZN st. — [ <m; < I}
Approximate Viy with Viy = > 1 Caim®nim
Can assume Vjy has same symmetries as Vy

e Permutation invariance: Cpim = Con,ol,om

o Reflection symmetry: ¢pim(—r) = (—1)'¢nim(r)

V(R) = 13 im Cotm (1 4 (1)) Gptim(R),

@ Restrict V) to
{reR3: |r| >}V

® {Pn(r)}n — linearly
independent

v
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N—body basis: gb,,,m(rl, ey r/\/) = Hj:l anj/jmj(!:,')
Vi € span{dpm: n,l e NN me ZN st. — [ <m; < I}
Approximate Viy with Viy = > 1 Caim®nim
Can assume Vjy has same symmetries as Vy

e Permutation invariance: Cpim = Con,ol,om

o Reflection symmetry: ¢pim(—r) = (—1)'¢nim(r)

V(R) = 13 im Cotm (1 4 (1)) Gptim(R),

@ Restrict V) to
{reR3: |r| >}V

® {Pn(r)}n — linearly
independent

WR= Y am Y [ (9nim 20) (QRYIQ

(n,I,m) ordered oE€SN 50(3
Zj IJ even
~ nli
= Z Cnli ZCSn ) Z ¢nImOU(R)
(n,1) ordered,i m O'ESN
Zjljeven
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ACE: Approximate Viy(R) where R = (ry,...,ry) € R3V

1-body basis: ¢nim(r) = Pa(r)Y/"(F),
. N

N—body basis: gb,,,m(rl, ey r/\/) = Hj:l anj/jmj(!:,')
Vi € span{dpm: n,l e NN me ZN st. — [ <m; < I}
Approximate Viy with Viy = > 1 Caim®nim
Can assume Vjy has same symmetries as Vy

e Permutation invariance: Cpim = Con,ol,om

o Reflection symmetry: ¢pim(—r) = (—1)'¢nim(r)

V(R) = 13 im Cotm (1 4 (1)) Gptim(R),

@ Restrict V) to
{reR3: |r| >}V

® {Pn(r)}n — linearly
independent

WR= Y am Y [ (9nim 20) (QRYIQ

(n,I,m) ordered oE€SN 50(3
Zj IJ even
~ nli
= Z Cnli Z CSn ) Z ¢nlm © U(R)
(n,zl)jc;jrd:vree:,i m gESN = Bai(R)

v
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(Naive) Cost: compute basis N!, evaluate following (7)

Z VN(Ula"'aGN):ZEnH Z Bnli('j17"'7'yN)

< <jn nli J<<jn
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ACE: Trick

(Naive) Cost: compute basis N!, evaluate following (,{,)

S W) =S e S Bair 1)

1< <jn nli A<<jn
1 1
Z Bnli(rjla'-'arjm):m Z Bnli(rj'p'-'a"jm):m Z Bnli(rjl
<<y ’ Jl##JN .jlv"'v.jN

,...,I’J'N)+ WN_1

1l
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ACE: Trick

(Naive) Cost: compute basis N!, evaluate following (,“\’,)

Z \7N(I’J'1,...

N<<Jn

Z B,,[,‘(rjl, .

<<Jn

1
m Z B,,/,-(rjl, e

7rj/\/) = ZEnIi Z Bnli(rjl, e, I:,N)

nli J1<<Jn

1
7rJN = Z Bnh rJ1v'--7rJ'N):m Z B"l"("1'17"'7’7N)+WN_1

Jﬁﬁ “FiN

) rJN = Z ZC G Z Pnim (rja(nv SRR rJ'a(N))

iy m oE€SN

n
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ACE: Trick

(Naive) Cost: compute basis N!, evaluate following (,{,)

3 vN(r,.l,...,r,.N>:zz,,,,- S Builr - 1)

h<<jn nli <<jn
Z Bnli('}'1v"'>')m = Z Buii( rJl""’rJN = Z Bati( rJl "’GN)+WN_1
j1< “<Jn 117'é Fvoo T
(nli)
Y B = i S TSl i)
..... YL oESN
nli
“Y e S TTonim(n)
J1seean =1
. (nli)
SCD | P
a=1 j=1

v
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ACE: Trick

(Naive) Cost: compute basis N!, evaluate following (,{,)

3 vN(r,.l,...,r,.N>:zz,,,,- S Builr - 1)

h<<jn nli <<jn
Z Bnli(rjw"wrﬂv = Z Bnh rJl?""’JN = Z B”” rJl GN)+WN_1
j1< “<Jn 117'é Fvoo T
(nli)
TPOENURRERES 9P 3 L) oy CHSRIN
..... ey m oESN
nli
LD EES
J1seean =1
. (nli)
SIS P
1 .
a=1j=1 = Bui({rj})
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ACE: Trick

(Naive) Cost: compute basis N!, evaluate following (,{,)

3 vN(r,.l,...,r,.N>:zz,,,,- S Builr - 1)

1< <jn nli J1<<Jn

Z Buii(rjys - 1) = Z Buii(Hjy, - 1) = Z Buii(rps - ) + Wi
j1< “<Jn 117'é Fvoo T

(nli)
Z B,,/, rjlq...,er Z Zc Z¢nlm rjal)a"'arjg(m))
..... N m o€SN
_ (nli) .
ZC Z H Pralame (o) ACE = expansion in terms
JLyeedn =1 of the basis

(nli) UN—o{Bmi: n,1 e NV .}
=2 cm Hz%a/ama )

a=1 j=1 =: Bui({r;})

i
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¥ =[-1,4U[b1]

Find gy s.t.
Define gs(z) := ReGs(z) where o Ags —0onC\ ¥,
o gx(z) ~log|z| as z — oo,
@ gz =0o0nX.
z3 € [a, b] s.t. Gs(a) = Gg(b) w = ix
b
/ C ac
AR 5 W Y N

b 1 .
/a VC+ IV —a/(—b/( -1

C Wy = Wy
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¥ =[-1,4U[b1]

Find g5 s.t.
Define gy (z) := ReGx(z) where @ Ags =00onC\Z,

(—2z3 ¢ e gs(z) ~log|z| as z — o0,

Cl-1auip)(2) = /1 VC+ IV —aV/C— b/ ( - i @ gs=0onX.

z3 € [a, b] s.t. Gx(a) = Gs(b) p—
b
/ C «
73 = a \/C+1\/C*3\/C*b\/é—1

b 1 g
/a V+1/(—a/(—by( -1

C Wy = Wy
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