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e For a given weight w(x) > 0, approximate the integral Nodes (x;)

/f(x)w(x)dx ~ EN: wif () Weights (w;)
j=0

e.g. Jacobi weights

+1
/ F(x)(1 = x)*(1 + x)dx

-1
Or more generally,
@ For Borel measures p, approximate the integral

N
/f(x)du(x) ~ ijf(xj)
j=0

e.g. For A self-adjoint 3! spectral measures jip such that j=0

F(A) = / F(x)due

1/13



Gauss Quadrature

@ 4 unit Borel measure on R & let {p,} be corresponding
orthogonal polynomials:

Pn € Ph, /p,,(x)pm(x)d,u(x) =0 foralln#m (1)

@ Examples: Chebyshev |, II, Legendre, Two intervals I, I
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Gauss Quadrature

@ 4 unit Borel measure on R & let {p,} be corresponding
orthogonal polynomials:

Pn € Ph, /p,,(x)pm(x)d,u(x) =0 foralln#m (1)

@ Examples: Chebyshev |, II, Legendre, Two intervals I, I

@ Nodes: Let Xy = {xo,...,xn} be the set of zeros of py.1
(Need: nodes are distinct — proof later)

@ Gauss quadrature:

N
Tnf = wif () = / Iy F(x)dpa(x)
j=0

where [x is the polynomial interpolation on X
o Thatis, if £;(x) = ][, )’;__’;'I € Pn (i-e. £j(x;) = 0jj), then
wi = [ 4()du(x)
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Proof: Take P € Pany1
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[ Pdu = ZnP for all P € Pyyiq

Proof: Take P € Pany1
o dJgn, rn € Py such that P = pyntign + i,
o Px) = pn+1(x)an(x;) + rv(x;) = rv(x;)

/PdMZ/[PN+1qN+fN]dM

= /rNdp (orthogonality)
= / IXNrNd,u (|XN| =N+ 1)
N N
=Y wirn(x) = Y wiP(x)
j=0 j=0
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w; > 0and 37w =1

Proof: Recall ¢; € Py with £;(x;) = dj;
° EJZ € Pon and so

/szu ZW, Xi) —WJ
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w; > 0and 37w =1

Proof: Recall ¢; € Py with £;(x;) = dj;
° Ejg € Pon and so

/ézdu ZW, Xi) —Wj

P =N, € Py with P(x;) =1forj=0,...,N,
e Thatis, P(x) =1 and so

N N
Zm=ZVVJP(>9)=/Pdu:u(R)=1
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Error estimates

Let P € Pon1,
‘/fdu—INf‘ - ’/(f—P)dquIN(P— f)‘ 2)

N
s/lf—P{dem\f(xj-)—P(Xj)\ (3)
j=0

< 2||f - P||L°°(supp(u)UXN) (4)
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Error estimates

Let P € Pon1,
‘/fdu—INf‘ - )/(f—P)dquIN(P— f)‘ (2)

N
< / |F = Pldp+ " wilf(x) — Plx)|  (3)

j=0
< 2||f - P||L°°(supp(u)UXN) (4)

Claim: number of points in Xy outside supp(u) is bounded
independently of N
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If supp(p) N [a, b] =0, then | Xy N [a, b]| < 1 - example

@ Relabel so that xp,x1 € Xy N [a, b],
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Relabel so that xp, x; € Xy N [a, b],
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If supp(i) N [a, b] = 0, then | Xy N [a, b]| < 1 - example

Relabel so that xp, x; € Xy N [a, b],

Define R(x) = Hszz(X — Xj) € Pn-1,

Suppose pyt1(x) =c¢ J-Nzo(x — Xj),
Since (x — xo)(x — x1) > 0 on supp i, we have

[ pwsabaRC)n = ¢ [ RO x0)(x — x)dn 0

This contradicts the orthogonality property.
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Error estimates

| [ fan-uf| <2, inf 1~ Plosuminixg )

€Pan+1
< e~ IN(2N+1) (6)

where vy — ge(z*) as N — oo and z* is the singularity of f

“closest” to supp(u)

(c.f. logarithmic potential theory from last time | spoke)
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What information about u is needed to construct Zy?

@ i.e. what information is needed to construct pyy17?
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What information about u is needed to construct Zy?

i.e. what information is needed to construct pyy17?
First 2N 4+ 1 moments

m,,::/x”d,u(x) forn=1,...,2N+1

In fact, can use Lanczos-type recursion to generate {p,}:

p_1:=0, po=1, and ag = /xdu = my, by := 0.

Then for n > 0,

bn+1pn+1 = (X - an)pn(X) - bnpn—l(x)
bns / Pra(XPdu(x) =1, a1 = / D1 (x)2dp(x)
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1 - unit Borel measure with my = [ x"dp(x)
compact support forn=0,....,2N+1,...

OPs PO; -+ PN+1, - - -

ag b ag b
by aa b b
T = b2 . s TN = 1 a
by
by an
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1 - unit Borel measure with my = [ x"dp(x)
compact support forn=0,...,2N+1,...
mo my mp mpi1
my mp Mpy1
pn+1(X) = Cp mp Mpy1
mp Mp1 Monpy1
1 % . o XL

OPs PO; -+ PN+1, - - -

ag b ag b
by a b b
T = b2 s TN = 1 a
by
by an
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1 - unit Borel measure with
compact support

a0
by

by
a1

by

my = [ x"dp(x)
forn=0,....,2N+1,...

mo nmy mp mpi1
mq mpy Mmp41
pn+1(X) = Cn mp Mpi1
mpy mn+1 m2n+1
1 X . e X"+l

OPs PO; -+ PN+1, - - -

=h) b]_
by a - Xn = {roots of pyt1} = o(Ty)

by
bN an

TN =
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1 - unit Borel measure with my = [ x"dp(x)
compact support forn=0,....,2N+1,...
1 . . .
u(x) = 5= lim [G(x+i2) = G(x — ie)| o o s
G(z) =[(T—-2)"",, my My Mpga
1 pn+1(X) = Cn mp Mpi1
= mn mn m n
b% 1 X+1 xilel
22y . . .
b2
z—a — ——
' . OPSva""pN-i-l:"'
Z — dy —
do b1 =h) b]_
b a by by a1 Xn = {rOOtS of pN+1} = U( TN)
T = by ; T =
by
bN an
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. . Fix E C R compact N
ft - unit Borel measure with (under some conditions) 3! 11 with mp = [ x"dp(x)
compact support moments m, and support E forn=0,...,2N+1,...
1 . .
u(x) = o slino [G(x +ig) — G(x — /8)] me m My M
G(z) =[(T—-2)"",, my My Mpga
1 pn+1(X) = Cn mp Mpi1
— mp  Mpyq mapy1
bt 1 b% . S
V4 do b%
z—a — ———
' : OPSva""pN-i-l:"'
Z — dy —
do b1 =h) b]_
by a1 b by a Xy = {roots of pyy1} = o(Ty)
T = b2 . s TN =
by
bN an
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Xy - set of N + 1 distinct points

Proof: Since o(Tn) = Xy and b, > 0 for each n, for each
A € Xp, the matrix

. by
bN aN—)\

has full rank. Therefore, X is a simple eigenvlaue.
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Spectral measures

@ H bounded self-adjoint operator on a Hilbert space
(e.g. symmetric real valued matrices)
o ! uy spectral measure such that

f(H)M:/fdMe

e f(H)y is a local quantity of interest,
@ Gauss quadrature leads to the nonlinear approximation

N
f(H)u = Z w;f(x;) = gn (Hees [Hees - - [H?V )
j=0
where gy: Uy € €Nt — C is analytic
o c.f. "linear” body order expansion
2N+1

F(H)ee = Ponya(H)ee = ) ealHue

n=0
11/13



Error estimates: comparison

@ linear:
|f(H)M — P2[\/+1(H)M| < ||f - P2N+1||L°°(U(H))

Problem: to obtain good estimates, we require knowledge of
the point spectrum!

@ nonlinear:

F(H)ee = p_wif ()| <2 inf |If = Pl| joo (o (myuxy)

PePon+1

NME

Jj=0

where | Xy \ 0(H)| bounded independently of N.

@ Can use the potential theory results to bound the right hand
sides (talked about this last time)
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