
Quadrature

For a given weight w(x) ≥ 0, approximate the integral∫
f (x)w(x)dx

e.g. Jacobi weights∫ +1

−1
f (x)(1− x)α(1 + x)βdx

Or more generally,

For Borel measures µ, approximate the integral∫
f (x)dµ(x)

e.g. For A self-adjoint ∃! spectral measures µ` such that

f (A)`` =

∫
f (x)dµ`
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Weights (wj)≈

N∑
j=0

wj f (xj)
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Gauss Quadrature

µ unit Borel measure on R & let {pn} be corresponding
orthogonal polynomials:

pn ∈ Pn,
∫

pn(x)pm(x)dµ(x) = 0 for all n 6= m (1)

Examples: Chebyshev I, II, Legendre, Two intervals I, II

Nodes: Let XN = {x0, . . . , xN} be the set of zeros of pN+1

(Need: nodes are distinct → proof later)

Gauss quadrature:

IN f :=
N∑
j=0

wj f (xj) :=

∫
IXN

f (x)dµ(x)

where IX is the polynomial interpolation on X

That is, if `j(x) :=
∏

i 6=j
x−xi
xj−xi ∈ PN (i.e. `j(xi ) = δij), then

wj :=
∫
`j(x)dµ(x),

2 / 13
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∫
Pdµ = INP for all P ∈ P2N+1

Proof: Take P ∈ P2N+1

∃qN , rN ∈ PN such that P = pN+1qN + rN ,

P(xj) = pN+1(xj)qN(xj) + rN(xj) = rN(xj)∫
Pdµ =

∫ [
pN+1qN + rN

]
dµ

=

∫
rNdµ (orthogonality)

=

∫
IXN

rNdµ
(
|XN | = N + 1

)
=

N∑
j=0

wj rN(xj) =
N∑
j=0

wjP(xj)

= INP
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wj ≥ 0 and
∑N

j=0 wj = 1

Proof: Recall `j ∈ PN with `j(xi ) = δij

`2j ∈ P2N and so

0 ≤
∫
`2j dµ =

N∑
i=0

wi`j(xi )
2 = wj

P =
∑N

j=0 `j ∈ PN with P(xj) = 1 for j = 0, . . . ,N,

That is, P(x) ≡ 1 and so

N∑
j=0

wj =
N∑
j=0

wjP(xj) =

∫
Pdµ = µ(R) = 1
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Error estimates

Let P ∈ P2N+1,∣∣∣ ∫ f dµ− IN f
∣∣∣ =

∣∣∣ ∫ (f − P)dµ+ IN(P − f )
∣∣∣ (2)

≤
∫ ∣∣f − P

∣∣dµ+
N∑
j=0

wj

∣∣f (xj)− P(xj)
∣∣ (3)

≤ 2‖f − P‖L∞(supp(µ)∪XN) (4)

Claim: number of points in XN outside supp(µ) is bounded
independently of N
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If supp(µ) ∩ [a, b] = ∅, then |XN ∩ [a, b]| ≤ 1 - example

Relabel so that x0, x1 ∈ XN ∩ [a, b],

Define R(x) :=
∏N

j=2(x − xj) ∈ PN−1,

Suppose pN+1(x) = c
∏N

j=0(x − xj),

Since (x − x0)(x − x1) > 0 on suppµ, we have∫
pN+1(x)R(x)dµ = c

∫
R(x)2(x − x0)(x − x1)dµ 6= 0

This contradicts the orthogonality property.
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Error estimates

∣∣∣ ∫ f dµ− IN f
∣∣∣ ≤ 2 inf

P∈P2N+1

‖f − P‖L∞(supp(µ)∪XN) (5)

. e−γN(2N+1) (6)

where γN → gE (z?) as N →∞ and z? is the singularity of f
“closest” to supp(µ)

(c.f. logarithmic potential theory from last time I spoke)
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What information about µ is needed to construct IN?

i.e. what information is needed to construct pN+1?

First 2N + 1 moments

mn :=

∫
xndµ(x) for n = 1, . . . , 2N + 1

In fact, can use Lanczos-type recursion to generate {pn}:

p−1 := 0, p0 := 1, and a0 :=

∫
xdµ = m1, b0 := 0.

Then for n ≥ 0,

bn+1pn+1 = (x − an)pn(x)− bnpn−1(x)

bn+1 :

∫
pn+1(x)2dµ(x) = 1, an+1 :=

∫
xpn+1(x)2dµ(x)
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Summary

9 / 13

µ - unit Borel measure with
compact support

mn =
∫
xndµ(x)

for n = 0, . . . , 2N + 1, . . .

OPs p0, . . . , pN+1, . . .

T :=


a0 b1
b1 a1 b2

b2
. . .

. . .
. . .

. . .

 , TN :=


a0 b1

b1 a1
. . .

. . .
. . . bN
bN aN



pn+1(x) = cn

∣∣∣∣∣∣∣∣∣∣
m0 m1 mn mn+1

m1 mn mn+1

mn mn+1

mn mn+1 m2n+1

1 x . . . . . . xn+1

∣∣∣∣∣∣∣∣∣∣

XN := {roots of pN+1} = σ(TN)

µ(x) =
1

2π
lim
ε→0

[
G (x + iε)− G (x − iε)

]
G (z) :=

[
(T − z)−1

]
00

=
1

z − a0 −
b21

z − a1 −
b22

z − a2 −
. . .

Fix E ⊂ R compact
(under some conditions) ∃!µ with
moments mn and support E
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XN - set of N + 1 distinct points

Proof: Since σ(TN) = XN and bn > 0 for each n, for each
λ ∈ XN , the matrix

TN − λ =


a0 − λ b1
b1 a1 − λ b2

b2
. . .

. . .
. . .

. . . bN
bN aN − λ


has full rank. Therefore, λ is a simple eigenvlaue.
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Spectral measures

H bounded self-adjoint operator on a Hilbert space
(e.g. symmetric real valued matrices)
∃!µ` spectral measure such that

f (H)`` =

∫
f dµ`

f (H)`` is a local quantity of interest,
Gauss quadrature leads to the nonlinear approximation

f (H)`` ≈
N∑
j=0

wj f (xj) = gN
(
H``, [H

2]``, . . . , [H
2N+1]``

)
where gN : UN ⊂ C2N+1 → C is analytic
c.f. “linear” body order expansion

f (H)`` ≈ P2N+1(H)`` =
2N+1∑
n=0

cn[Hn]``

11 / 13



Error estimates: comparison

linear:

|f (H)`` − P2N+1(H)``| ≤ ‖f − P2N+1‖L∞(σ(H))

Problem: to obtain good estimates, we require knowledge of
the point spectrum!

nonlinear:∣∣∣∣∣∣f (H)`` −
N∑
j=0

wj f (xj)

∣∣∣∣∣∣ ≤ 2 inf
P∈P2N+1

‖f − P‖L∞(σ(H)∪XN)

where |XN \ σ(H)| bounded independently of N.

Can use the potential theory results to bound the right hand
sides (talked about this last time)
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If supp(µ) ∩ [a, b] = ∅, then |XN ∩ [a, b]| ≤ 1 - go back
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