Locality of interatomic interactions

Jack Thomas (Orsay)

Joint work with Huajie Chen (Beijing Normal University), Christoph Ortner (University of British Columbia), and Antoine Levitt (Orsay)

Problèmes Spectraux en Physique Mathématique, June 2023

Outline

(1) Introduction
(2) Locality of the density matrix

- Logarithmic potential theory
- Schwarz-Christoffel mappings
- Example
(3) Site energy decomposition
- Interatomic potentials
- Spatial decomposition
(4) Body-ordered approximations
- Linear schemes
- Nonlinear schemes
- Examples
(5) Conclusions

Set-up

- Many-body Schrödinger equation: $\mathcal{H}_{\text {tot }} \Psi=E \Psi$
- Born-Oppenheimer: solve for the electrons $\mathcal{H}_{\mathrm{BO}}=\mathcal{H}_{\mathrm{BO}}(r)$ $\left[\right.$ where $\left.\boldsymbol{r}=\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N_{\mathrm{at}}}\right) \in\left(\mathbb{R}^{\boldsymbol{d}}\right)^{N_{\mathrm{at}}}\right]$
- Kohn-Sham equations:

$$
\mathcal{H} \psi_{i}(x):=\left(-\frac{1}{2} \Delta+V(x)\right) \psi_{i}(x)=\varepsilon_{i} \psi_{i}(x)
$$

$$
\rho(x, y):=\sum_{i} f\left(\varepsilon_{i}\right) \psi_{i}^{\star}(x) \psi_{i}(y), \quad \rho(x):=\rho(x, x)
$$

where $f\left(\varepsilon_{i}\right)$ are the single particle occupation numbers $V=V[\rho] \rightsquigarrow$ self-consistent field,

- Discretization: $\mathcal{H} \psi_{i}=\varepsilon_{i} S \psi_{i}$ where $\mathcal{H} \in \mathbb{R}^{N_{\mathrm{b}} N_{\mathrm{at}} \times N_{\mathrm{b}} N_{\mathrm{at}}}$

Set-up

- Many-body Schrödinger equation: $\mathcal{H}_{\text {tot }} \Psi=E \Psi$
- Born-Oppenheimer: solve for the electrons $\mathcal{H}_{\mathrm{BO}}=\mathcal{H}_{\mathrm{BO}}(\boldsymbol{r})$
[where $\boldsymbol{r}=\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N_{\mathrm{at}}}\right) \in\left(\mathbb{R}^{\boldsymbol{d}}\right)^{N_{\mathrm{at}}}$]
- Kohn-Sham equations:

where $f\left(\varepsilon_{i}\right)$ are the single particle occupation numbers $V=V[\rho] \rightsquigarrow$ self-consistent field,
- Discretization: $\mathcal{H} \psi_{i}=\varepsilon_{i} S \psi_{i}$ where $\mathcal{H} \in \mathbb{R}^{N_{\mathrm{b}} N_{\mathrm{at}} \times N_{\mathrm{b}} N_{\mathrm{at}}}$

Set-up

- Many-body Schrödinger equation: $\mathcal{H}_{\text {tot }} \Psi=E \Psi$
- Born-Oppenheimer: solve for the electrons $\mathcal{H}_{\mathrm{BO}}=\mathcal{H}_{\mathrm{BO}}(\boldsymbol{r})$
[where $\boldsymbol{r}=\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N_{\mathrm{at}}}\right) \in\left(\mathbb{R}^{d}\right)^{N_{\mathrm{at}}}$]
- Kohn-Sham equations:

$$
\begin{gathered}
\mathcal{H} \psi_{i}(x):=\left(-\frac{1}{2} \Delta+V(x)\right) \psi_{i}(x)=\varepsilon_{i} \psi_{i}(x) \\
\rho(x, y):=\sum_{i} f\left(\varepsilon_{i}\right) \psi_{i}^{\star}(x) \psi_{i}(y), \quad \rho(x):=\rho(x, x)
\end{gathered}
$$

where $f\left(\varepsilon_{i}\right)$ are the single particle occupation numbers
$V=V[\rho] \rightsquigarrow$ self-consistent field,

- Discretization: $\mathcal{H} \psi_{i}=\varepsilon_{i} S \psi_{i}$ where $\mathcal{H} \in \mathbb{R}^{N_{\mathrm{b}} N_{\mathrm{at}} \times N_{\mathrm{b}} N_{\mathrm{at}}}$

Set-up

- Many-body Schrödinger equation: $\mathcal{H}_{\text {tot }} \Psi=E \Psi$
- Born-Oppenheimer: solve for the electrons $\mathcal{H}_{\mathrm{BO}}=\mathcal{H}_{\mathrm{BO}}(\boldsymbol{r})$
$\left[\right.$ where $\boldsymbol{r}=\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N_{\mathrm{at}}}\right) \in\left(\mathbb{R}^{\boldsymbol{d}}\right)^{N_{\mathrm{at}}}$]
- Kohn-Sham equations:

$$
\begin{gathered}
\mathcal{H} \psi_{i}(x):=\left(-\frac{1}{2} \Delta+V(x)\right) \psi_{i}(x)=\varepsilon_{i} \psi_{i}(x) \\
\rho(x, y):=\sum_{i} f\left(\varepsilon_{i}\right) \psi_{i}^{\star}(x) \psi_{i}(y), \quad \rho(x):=\rho(x, x)
\end{gathered}
$$

where $f\left(\varepsilon_{i}\right)$ are the single particle occupation numbers
$V=V[\rho] \rightsquigarrow$ self-consistent field,

- Discretization: $\mathcal{H} \psi_{i}=\varepsilon_{i} S \psi_{i}$ where $\mathcal{H} \in \mathbb{R}^{N_{\mathrm{b}} N_{\mathrm{at}} \times N_{\mathrm{b}} N_{\mathrm{at}}}$

Linear Scaling Algorithms

e.g. [Goedecker 1999]

$\rho(x, y)$ is short-ranged in $|x-y|$ [Kohn 1996]

Linear Scaling Algorithms
e.g. [Goedecker 1999]

Machine Learned Interatomic Potentials e.g. [Musil et al. 2021]

Geometry Relaxation e.g. [Chen Lu Ortner 2018, Ortner JT 2020]

$\rho(x, y)$ is short-ranged in $|x-y|$ [Kohn 1996]

$$
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r}), \quad\left|\frac{\partial E_{\ell}}{\partial \boldsymbol{r}_{k}}\right| \lesssim e^{-\gamma r_{\ell k}}
$$

e.g. [Chen Ortner 2016, Nazar Ortner 2017, Ortner JT Chen 2020, JT 2020]

Multiscale Methods
e.g. [Csányi et al. 2005]

Decay of the forces:

$$
\frac{\partial^{2} E(\boldsymbol{r})}{\partial \boldsymbol{r}_{\ell} \partial \boldsymbol{r}_{k}} \text { etc. }
$$

Notation

- Recall: $\mathcal{H} \psi_{i}=\varepsilon_{i} \psi_{i}, \mathcal{H} \in \mathbb{R}^{N_{\mathrm{b}} N_{\mathrm{at}} \times N_{\mathrm{b}} N_{\mathrm{at}}}$ given by
[Take $S=$ id by considering Löwdin transform: $S^{-T / 2} \mathrm{HS}^{1 / 2}$]

$$
\mathcal{H}_{\ell k, a b}:=\int \phi_{\ell a}(x)\left[-\frac{1}{2} \Delta+V(x)\right] \phi_{k b}(x) \mathrm{d} x
$$

$\left\{\phi_{\ell a}\right\}_{a=1}^{N_{b}}$ - atom-centered localised basis functions at \boldsymbol{r}_{ℓ}

Notation

- Recall: $\mathcal{H} \psi_{i}=\varepsilon_{i} \psi_{i}, \mathcal{H} \in \mathbb{R}^{N_{\mathrm{b}} N_{\mathrm{at}} \times N_{\mathrm{b}} N_{\mathrm{at}}}$ given by

Orbitals
Spectrum

$$
\mathcal{H}_{\ell k, a b}:=\int \phi_{\ell a}(x)\left[-\frac{1}{2} \Delta+V(x)\right] \phi_{k b}(x) \mathrm{d} x
$$

$\left\{\phi_{\ell a}\right\}_{a=1}^{N_{b}}$ - atom-centered localised basis functions at \boldsymbol{r}_{ℓ}

- Assume: $\left|\mathcal{H}_{\ell k}\right| \lesssim e^{-\gamma_{0} r_{\ell k}} \quad\left[r_{\ell k}:=\left|\boldsymbol{r}_{\ell}-\boldsymbol{r}_{k}\right|\right]$
- Density matrix: $F(\mathcal{H})$
- Band energy: $E:=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))$
[Take $S=$ id by considering Löwdin transform: $S^{-T / 2} \mathrm{HS}^{1 / 2}$]

Matrix entries

Notation

- Recall: $\mathcal{H} \psi_{i}=\varepsilon_{i} \psi_{i}, \mathcal{H} \in \mathbb{R}^{N_{\mathrm{b}} N_{\mathrm{at}} \times N_{\mathrm{b}} N_{\mathrm{at}}}$ given by

$$
\mathcal{H}_{\ell k, a b}:=\int \phi_{\ell a}(x)\left[-\frac{1}{2} \Delta+V(x)\right] \phi_{k b}(x) \mathrm{d} x
$$

$\left\{\phi_{\ell a}\right\}_{a=1}^{N_{b}}$ - atom-centered localised basis functions at \boldsymbol{r}_{ℓ}

- Assume: $\left|\mathcal{H}_{\ell k}\right| \lesssim e^{-\gamma_{0} r_{\ell k}} \quad\left[r_{\ell k}:=\left|\boldsymbol{r}_{\ell}-\boldsymbol{r}_{k}\right|\right]$
- Density matrix: $F(\mathcal{H})$
- Band energy: $E:=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))$
[Take $S=$ id by considering Löwdin transform: $S^{-T / 2} H S^{1 / 2}$]

Matrix entries

$$
F=
$$

$$
F^{\beta}=
$$

$$
\bar{\mu}=\varepsilon_{\mathrm{F}}
$$

Outline

(1) Introduction

(2) Locality of the density matrix

- Logarithmic potential theory
- Schwarz-Christoffel mappings
- Example
(3) Site energy decomposition
- Interatomic potentials
- Spatial decomposition
(4) Body-ordered approximations
- Linear schemes
- Nonlinear schemes
- Examples

(5) Conclusions

Density matrix (banded matrices)

- Suppose \mathcal{H} is m-banded:

$$
\mathcal{H}_{\ell k}=0 \quad \text { for all } r_{\ell k}>m
$$

- Then, $\left[\mathcal{H}^{N}\right]_{\ell k}=0$ for all $r_{\ell k}>m N$
- That is, $P_{N}(\mathcal{H})_{\ell k}=0$ for all $N<\frac{1}{m} r_{\ell k}$

$$
\begin{aligned}
& \quad P_{N} \in \mathcal{P}_{N} \\
& \text { polynomials of } \\
& \text { degree } \leq N
\end{aligned}
$$

Density matrix (banded matrices)

- Suppose \mathcal{H} is m-banded:

$$
\mathcal{H}_{\ell k}=0 \quad \text { for all } r_{\ell k}>m
$$

- Then, $\left[\mathcal{H}^{N}\right]_{\ell k}=0$ for all $r_{\ell k}>m N$
- That is, $P_{N}(\mathcal{H})_{\ell k}=0$ for all $N<\frac{1}{m} r_{\ell k}$
- Therefore,

$$
\begin{aligned}
\left|F(\mathcal{H})_{\ell k}\right| & =\min _{P \in \mathcal{P}_{N}}\left|[F(\mathcal{H})-P(\mathcal{H})]_{\ell k}\right| \\
& \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
\end{aligned}
$$

$$
P_{N} \in \mathcal{P}_{N}
$$ polynomials of degree $\leq N$

Density matrix (banded matrices)

- Suppose \mathcal{H} is m-banded:

$$
\mathcal{H}_{\ell k}=0 \quad \text { for all } r_{\ell k}>m
$$

- Then, $\left[\mathcal{H}^{N}\right]_{\ell k}=0$ for all $r_{\ell k}>m N$
- That is, $P_{N}(\mathcal{H})_{\ell k}=0$ for all $N<\frac{1}{m} r_{\ell k}$
- Therefore,

$$
\begin{aligned}
\left|F(\mathcal{H})_{\ell k}\right| & =\min _{P \in \mathcal{P}_{N}}\left|[F(\mathcal{H})-P(\mathcal{H})]_{\ell k}\right| \\
& \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
\end{aligned}
$$

- Locality \longleftrightarrow Polynomial approximation on the spectrum
\longleftrightarrow spectral gap or $\beta<\infty$ (insulators or finite temperature)

$$
P_{N} \in \mathcal{P}_{N}
$$

polynomials of

$$
\text { degree } \leq N
$$

Density matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.

Upper Bounds:

- Finite temperature $(\beta<\infty)$:

For $N<\frac{r_{e k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \frac{2\|F\|_{L^{\infty}\left(\mathcal{E}_{\chi}\right)}}{\chi-1} \chi^{-N}
$$

where F is analytic on \mathcal{E}_{χ}.
[Proof: Chebyshev coefficients decay exponentially depending on region of analyticity]

Density matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.

Upper Bounds:

- Finite temperature $(\beta<\infty)$:

For $N<\frac{r_{e k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \frac{2\|F\|_{L^{\infty}\left(\mathcal{E}_{\chi}\right)}}{\chi-1} \chi^{-N} \leq C e^{-c \frac{\beta^{-1}}{m} r_{\ell k}}
$$

where F is analytic on \mathcal{E}_{χ}.
[Proof: Chebyshev coefficients decay exponentially depending on region of analyticity]

Density matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.

Upper Bounds:

- Finite temperature $(\beta<\infty)$:

For $N<\frac{r_{\ell k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \frac{2\|F\|_{L^{\infty}\left(\mathcal{E}_{\chi}\right)}}{\chi-1} \chi^{-N} \leq C e^{-c \frac{\beta^{-1}}{m} r_{\ell k}}
$$

where F is analytic on \mathcal{E}_{χ}.
[Proof: Chebyshev coefficients decay exponentially depending on region of analyticity]

- Insulators $(g>0)$:
[Hasson 2007]

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \frac{C}{\sqrt{N}} \sqrt{\frac{2-g}{2+g}}^{N}
$$

where g is the spectral gap.

Density matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.

Upper Bounds:

- Finite temperature $(\beta<\infty)$:

For $N<\frac{r_{\ell k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \frac{C}{\sqrt{N}} \sqrt{\frac{2-g}{2+g}}^{N} \sim C \sqrt{\frac{m}{r_{\ell k}}} e^{-\frac{g}{4 m} r_{\ell k}}
$$

where g is the spectral gap.

Density Matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.
Asymptotically optimal rates:
General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$
For $N<\frac{r_{e k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

Density Matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.
Asymptotically optimal rates:
General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$
For $N<\frac{r_{\ell k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

- $X=\left\{x_{j}\right\}_{j=0}^{N}$ - interpolation nodes

Density Matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.
Asymptotically optimal rates:
General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$
For $N<\frac{r_{k k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

- $X=\left\{x_{j}\right\}_{j=0}^{N}$ - interpolation nodes
- $I_{X} F \in \mathcal{P}_{N}$ with $I_{X} F\left(x_{j}\right)=F\left(x_{j}\right)$

Density Matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.
Asymptotically optimal rates:
General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$
For $N<\frac{r_{k k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

- $X=\left\{x_{j}\right\}_{j=0}^{N}$ - interpolation nodes
- $I_{X} F \in \mathcal{P}_{N}$ with $I_{X} F\left(x_{j}\right)=F\left(x_{j}\right)$

Density Matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.

Asymptotically optimal rates:
General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$
For $N<\frac{r_{e k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

- $X=\left\{x_{j}\right\}_{j=0}^{N}$ - interpolation nodes
- $I_{X} F \in \mathcal{P}_{N}$ with $I_{X} F\left(x_{j}\right)=F\left(x_{j}\right)$

Hermite Integral formula

Let \mathscr{C} contour encircling $X \cup\{x\}$,

$$
I_{X} F(x)-F(x)=\oint_{\mathscr{C}} \frac{\ell(x)}{\ell(z)} \frac{F(z)}{x-z} \frac{\mathrm{~d} z}{2 \pi i}
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$ is the node polynomial

Density Matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.

Asymptotically optimal rates:
General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$
For $N<\frac{r_{e k}}{m}$,

$$
\left|F(\mathcal{H})_{\ell k}\right| \leq \min _{P \in \mathcal{P}_{N}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

- $X=\left\{x_{j}\right\}_{j=0}^{N}$ - interpolation nodes
- $I_{X} F \in \mathcal{P}_{N}$ with $I_{X} F\left(x_{j}\right)=F\left(x_{j}\right)$

Hermite Integral formula

Let \mathscr{C} contour encircling $X \cup\{x\}$,

$$
I_{X} F(x)-F(x)=\oint_{\mathscr{C}} \frac{\ell(x)}{\ell(z)} \frac{F(z)}{x-z} \frac{\mathrm{~d} z}{2 \pi i}
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$ is the node polynomial

$$
\begin{aligned}
& \text { Proof: } \\
& \ell_{j}(x)=\prod_{k \neq j} \frac{x-x_{k}}{x_{j}-x_{k}}=\frac{\ell(x) /\left(x-x_{j}\right)}{\prod_{k \neq j}\left(x_{j}-x_{k}\right)}=\oint_{\mathscr{C}_{j}} \frac{\ell(x) /(x-z)}{\prod_{k \neq j}\left(z-x_{k}\right)} \frac{1}{z-x_{j}} \frac{d z}{2 \pi i}=\oint_{\mathscr{C}_{j}} \frac{\ell(x)}{\ell(z)} \frac{1}{x-z} \frac{\mathrm{~d} z}{2 \pi i}
\end{aligned}
$$

Density matrix (banded matrices)

Decay rate \longleftrightarrow polynomial approx.

For $X=\left\{x_{j}\right\}_{j=0}^{N}$ with $N<\frac{r_{\ell k}}{m}$

$$
\begin{aligned}
\left|F(\mathcal{H})_{\ell k}\right| & \leq \min _{P \in \mathcal{P}_{n}}\|F-P\|_{L^{\infty}(\sigma(\mathcal{H}))} \\
& \leq \frac{\|F\|_{\mathscr{C}}}{\operatorname{dist}(\sigma(\mathcal{H}), \mathscr{C})} \sup _{x \in \sigma(\mathcal{H}), z \in \mathscr{C}}\left|\frac{\ell(x)}{\ell(z)}\right|
\end{aligned}
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$

$$
\left|\frac{\ell(x)}{\ell(z)}\right| \quad \text { as } N \rightarrow \infty
$$

- How to choose X ?

Link to (Logarithmic) Potential Theory

- Define $\nu_{N}:=\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$ and note

$$
\begin{aligned}
\log \left[|\ell(x)|^{\frac{1}{N}}\right] & =\frac{1}{N} \sum_{j} \log \left|x-x_{j}\right| \\
& =\int \log |x-t| \mathrm{d} \nu_{N}(t)
\end{aligned}
$$

Decay rate \longleftrightarrow polynomial approx.
For $X=\left\{x_{j}\right\}_{j=0}^{N}$ with $N<\frac{r_{e k}}{m}$

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim \sup _{x \in \sigma(\mathcal{H}), z \in \mathscr{C}}\left|\frac{\ell(x)}{\ell(z)}\right|
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$

Link to (Logarithmic) Potential Theory

- Define $\nu_{N}:=\frac{1}{N} \sum_{j=0}^{N} \delta_{X_{j}}$ and note

$$
\text { For } X=\left\{x_{j}\right\}_{j=0}^{N} \text { with } N<\frac{r_{e k}}{m}
$$

$$
\begin{aligned}
\log \left[|\ell(x)|^{\frac{1}{N}}\right] & =\frac{1}{N} \sum_{j} \log \left|x-x_{j}\right| \\
& =\int \log |x-t| \mathrm{d} \nu_{N}(t)
\end{aligned}
$$

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim \sup _{x \in \sigma(\mathcal{H}), z \in \mathscr{C}}\left|\frac{\ell(x)}{\ell(z)}\right|
$$

$$
\text { where } \ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)
$$

- If $\nu_{N} \rightharpoonup^{\star} \nu$, then

$$
\lim _{N \rightarrow \infty}|\ell(x)|^{\frac{1}{N}}=e^{-U^{\nu}(x)} \quad \text { where } \quad U^{\nu}(x):=\int \log \frac{1}{|x-t|} \mathrm{d} \nu(t)
$$

Link to (Logarithmic) Potential Theory

- Define $\nu_{N}:=\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$ and note

$$
\begin{aligned}
\log \left[|\ell(x)|^{\frac{1}{N}}\right] & =\frac{1}{N} \sum_{j} \log \left|x-x_{j}\right| \\
& =\int \log |x-t| \mathrm{d} \nu_{N}(t)
\end{aligned}
$$

For $X=\left\{x_{j}\right\}_{j=0}^{N}$ with $N<\frac{r_{e k}}{m}$

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim \sup _{x \in \sigma(\mathcal{H}), z \in \mathscr{C}}\left|\frac{\ell(x)}{\ell(z)}\right|
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$

- If $\nu_{N} \rightharpoonup^{\star} \nu$, then

$$
\lim _{N \rightarrow \infty}|\ell(x)|^{\frac{1}{N}}=e^{-U^{\nu}(x)} \quad \text { where } \quad U^{\nu}(x):=\int \log \frac{1}{|x-t|} \mathrm{d} \nu(t)
$$

- Decay rate \longleftrightarrow asymptotic rate for polynomial approx.
\longleftrightarrow behaviour of $\left|\frac{\ell(x)}{\ell(z)}\right|$ for $x \in \sigma(\mathcal{H})$ and $z \in \mathscr{C}$
\longleftrightarrow behaviour of $U^{\nu}(x)-U^{\nu}(z)$

Link to Potential Theory

- $\Sigma \subset \mathbb{C}$ - compact approximation domain,

Link to Potential Theory

- $\Sigma \subset \mathbb{C}$ - compact approximation domain,
- Find $\mu \in \mathcal{M}(\Sigma)$
[unit Borel measure, supported on Σ] minimising the energy

$$
\mathrm{I}(\mu):=\int U^{\mu}(x) \mathrm{d} \mu(x)=\iint \log \frac{1}{|x-t|} \mathrm{d} \mu(t) \mathrm{d} \mu(x)
$$

Link to Potential Theory

- $\Sigma \subset \mathbb{C}$ - compact approximation domain,
- Find $\mu \in \mathcal{M}(\Sigma) \quad$ [unit Borel measure, supported on Σ] minimising the energy

$$
\mathrm{I}(\mu):=\int U^{\mu}(x) \mathrm{d} \mu(x)=\iint \log \frac{1}{|x-t|} \mathrm{d} \mu(t) \mathrm{d} \mu(x)
$$

- \exists ! minimiser ω_{Σ} - equilibrium measure with
$V_{\Sigma}:=\inf _{\mathcal{M}(\Sigma)} \mathrm{I} \in(-\infty, \infty]$ - Robin's constant $\left(\exists=\mathcal{M}(\Sigma)\right.$ weak * compact and I Isc, ! = strict convexity)

Link to Potential Theory

- $\Sigma \subset \mathbb{C}$ - compact approximation domain,
- Find $\mu \in \mathcal{M}(\Sigma) \quad$ [unit Borel measure, supported on Σ] minimising the energy

$$
\mathrm{I}(\mu):=\int U^{\mu}(x) \mathrm{d} \mu(x)=\iint \log \frac{1}{|x-t|} \mathrm{d} \mu(t) \mathrm{d} \mu(x)
$$

- \exists ! minimiser ω_{Σ} - equilibrium measure with
$V_{\Sigma}:=\inf _{\mathcal{M}(\Sigma)} \mathrm{I} \in(-\infty, \infty]$ - Robin's constant ($\exists=\mathcal{M}(\Sigma)$ weak * compact and I Isc, ! = strict convexity)
- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

For $X=\left\{x_{j}\right\}_{j=0}^{N}$ with $N<\frac{r_{\ell k}}{m}$

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim \sup _{x \in \sigma(\mathcal{H}), z \in \mathscr{C}}\left|\frac{\ell(x)}{\ell(z)}\right|
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$

Link to Potential Theory

Decay rate \longleftrightarrow polynomial approx.
For $X=\left\{x_{j}\right\}_{j=0}^{N}$ with $N<\frac{r_{\ell k}}{m}$

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim \sup _{x \in \sigma(\mathcal{H}), z \in \mathscr{C}}\left|\frac{\ell(x)}{\ell(z)}\right|
$$

$$
\text { where } \ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)
$$

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Frostman:
- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[V_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

Link to Potential Theory

For $X=\left\{x_{j}\right\}_{j=0}^{N}$ with $N<\frac{r_{e k}}{m}$

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim \sup _{x \in \sigma(\mathcal{H}), z \in \mathscr{C}}\left|\frac{\ell(x)}{\ell(z)}\right|
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[v_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

- Q: How to compute $g_{\Sigma}(z)=V_{\Sigma}-U^{\omega_{\Sigma}}(z) \geq 0$?

Link to Potential Theory

For $X=\left\{x_{j}\right\}_{j=0}^{N}$ with $N<\frac{r_{e k}}{m}$

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

$$
\begin{aligned}
& \qquad\left|F(\mathcal{H})_{\ell k}\right| \lesssim \sup _{x \in \sigma(\mathcal{H}), z \in \mathscr{C}}\left|\frac{\ell(x)}{\ell(z)}\right| \\
& \text { where } \ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)
\end{aligned}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[V_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

- Q: How to compute $g_{\Sigma}(z)=V_{\Sigma}-U^{\omega_{\Sigma}}(z) \geq 0$?
- (Q: How to choose X to obtain this rate of approximation?)

Link to Schwarz-Christoffel mappings

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[v_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

Link to Schwarz-Christoffel mappings

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[v_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

- The function $z \mapsto g_{\Sigma}(z)$ satisfies
- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}=0$ on Σ,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$

Link to Schwarz-Christoffel mappings

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[v_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

- The function $z \mapsto g_{\Sigma}(z)$ satisfies
- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}=0$ on Σ,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$
- \exists ! solution to this Green's function problem
$\Sigma=[-1,1]$

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.

$\Sigma=[-1,1]$

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.

$\Sigma=[-1, a] \cup[b, 1]$
Define $g_{\Sigma}(z):=\operatorname{Re} G_{\Sigma}(z)$ where

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.
$G_{[-1, a] \cup[b, 1]}$
\longrightarrow

$\Sigma=[-1, a] \cup[b, 1]$
Define $g_{\Sigma}(z):=\operatorname{Re} G_{\Sigma}(z)$ where

$$
G_{[-1, a] \cup[b, 1]}(z)=\int_{1}^{z} \frac{\zeta-z_{3}}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta
$$

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$
- Fejer sets

Consider $X:=G_{\Sigma}^{-1}\left(\left\{i \frac{\pi j}{N}\right\}_{j=0}^{N}\right)$

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$
- Fejer sets

Consider $X:=G_{\Sigma}^{-1}\left(\left\{i \frac{\pi j}{N}\right\}_{j=0}^{N}\right)$

- Leja sets

For $X=\left\{x_{j}\right\}_{j=0}^{N}$, choose $x_{N+1} \in \arg \max _{x \in \Sigma} \prod_{j=0}^{N}\left|x-x_{j}\right|$

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$
- Fejer sets

Consider $X:=G_{\Sigma}^{-1}\left(\left\{i \frac{\pi j}{N}\right\}_{j=0}^{N}\right)$

- Leja sets

For $X=\left\{x_{j}\right\}_{j=0}^{N}$, choose $x_{N+1} \in \arg \max _{x \in \Sigma} \prod_{j=0}^{N}\left|x-x_{j}\right|$

For $\Sigma=[-1,1]$:

- Chebyshev nodes are asymptotically distributed according to the arcsine measure:

$$
\mathrm{d} \omega_{[-1,1]}(x)=\frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x
$$

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$
- Fejer sets

Consider $X:=G_{\Sigma}^{-1}\left(\left\{i \frac{\pi j}{N}\right\}_{j=0}^{N}\right)$

- Leja sets

For $X=\left\{x_{j}\right\}_{j=0}^{N}$, choose $x_{N+1} \in \arg \max _{x \in \Sigma} \prod_{j=0}^{N}\left|x-x_{j}\right|$

For $\Sigma=[-1,1]$:

- Chebyshev nodes are asymptotically distributed according to the arcsine measure:

$$
\mathrm{d} \omega_{[-1,1]}(x)=\frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x
$$

Approximating $F^{\beta}(z)=\left(1+e^{\beta z}\right)^{-1}$

Summary: Density matrices

Banded matrices:

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim e^{-\gamma\left(r_{\ell k}\right) r_{\ell k}}
$$

- Finite temperature: $\gamma(r)=\frac{c \beta^{-1}}{m}$,

Summary: Density matrices

Banded matrices:

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim e^{-\gamma\left(r_{\ell k}\right) r_{\ell k}}
$$

- Finite temperature: $\gamma(r)=\frac{c \beta^{-1}}{m}$,
- Insulators: $\gamma(r)=\frac{c g}{m}$,

Summary: Density matrices

Banded matrices:

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim e^{-\gamma\left(r_{\ell k}\right) r_{\ell k}}
$$

- Finite temperature: $\gamma(r)=\frac{c \beta^{-1}}{m}$,
- Insulators: $\gamma(r)=\frac{c g}{m}$,
- Potential theory $\Longrightarrow \gamma(r) \rightarrow \gamma>0$ as $r \rightarrow \infty$ with

$$
\gamma \sim \beta^{-1}+\sqrt{g_{-}} \sqrt{g_{+}}
$$

as $\beta^{-1}+\sqrt{g_{-}} \sqrt{g_{+}} \rightarrow 0$.

Summary: Density matrices

Banded matrices:

$$
\left|F(\mathcal{H})_{\ell k}\right| \lesssim e^{-\gamma\left(r_{\ell k}\right) r_{\ell k}}
$$

- Finite temperature: $\gamma(r)=\frac{c \beta^{-1}}{m}$,
- Insulators: $\gamma(r)=\frac{c g}{m}$,
- Potential theory $\Longrightarrow \gamma(r) \rightarrow \gamma>0$ as $r \rightarrow \infty$ with

$$
\gamma \sim \beta^{-1}+\sqrt{g_{-}} \sqrt{g_{+}}
$$

$$
\text { as } \beta^{-1}+\sqrt{g_{-}} \sqrt{g_{+}} \rightarrow 0
$$

Remarks:

- point spectrum
- g vs \sqrt{g} ?
- banded matrices \rightsquigarrow exponential decay (Combes-Thomas)

Outline

(1) Introduction

(2) Locality of the density matrix

- Logarithmic potential theory
- Schwarz-Christoffel mappings
- Example
(3) Site energy decomposition
- Interatomic potentials
- Spatial decomposition
(4) Body-ordered approximations
- Linear schemes
- Nonlinear schemes
- Examples

Classical Interatomic Potentials:

Classical Interatomic Potentials: $\quad E(r)=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{r k}<r_{\text {rut }}}\right)$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)

Classical Interatomic Potentials: $\quad E(r)=\sum_{\ell} E_{\ell}\left(\left\{r_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

TABLE I. Quantities used for determination of the functions and their fitted values: lattice parameter a_{0}; elastic constants C_{11}, C_{12}, and C_{44}; sublimation energy E_{s}; vacancy formation energy $E_{1 v}{ }^{F}$; the energy difference between bec and fce phases for Ni ; and the hydrogen heat of solution and migration energy in Ni.

	Experiment	Fit
$a_{0}(\AA)$	3.52^{a}	3.52
$C_{11}\left(10^{12}\right.$ dynes $\left./ \mathrm{cm}^{2}\right)$	2.465^{b}	2.452
$C_{12}\left(10^{12}\right.$ dynes $\left./ \mathrm{cm}^{2}\right)$	1.473^{b}	1.452
$C_{44}\left(10^{12}\right.$ dynes $\left./ \mathrm{cm}^{2}\right)$	1.247^{b}	1.233
$E_{s}(\mathrm{eV})$	4.45^{c}	4.45
$E_{\mathrm{fV}}{ }^{2}(\mathrm{eV})$	1.4^{d}	1.43
$\left(E_{\mathrm{bcc}}-E_{\mathrm{fcc}}\right)(\mathrm{eV})$	0.06^{e}	0.14
H heat of solution (eV)	0.16^{f}	0.22
H migration energy (eV)	0.41^{g}	0.41

${ }^{\mathrm{a}}$ Ref. 13.
${ }^{\mathrm{b}}$ Ref. 14.
${ }^{\mathrm{c}}$ Ref. 15.
${ }^{\mathrm{d}}$ Ref. 16.
Daw, Baskes. Phys. Rev. Lett. 50 (1983)

Classical Interatomic Potentials: $\quad E(r)=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{r k}<r_{\text {eut }}}\right)$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\ \ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \quad \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
$$

Classical Interatomic Potentials:
 $$
E(r)=\sum_{\ell} E_{\ell}\left(\left\{r_{\ell k}\right\}_{r_{r k}<r_{\text {rut }}}\right)
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\ \ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} . \quad \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
$$

Overall, the most satisfactory parameter set thus far discovered is the following:

$$
\begin{align*}
& A=7.049556277, \quad B=0.6022245584 \\
& p=4, \quad q=0, \quad a=1.80 \tag{2.7}\\
& \lambda=21.0, \quad \gamma=1.20
\end{align*}
$$

Classical Interatomic Potentials:
 $$
E(r)=\sum_{\ell} E_{\ell}\left(\left\{r_{\ell k}\right\}_{r_{r k}<r_{\text {rut }}}\right)
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\ \ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \quad \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
$$

Not systematically improvable...

Overall, the most satisfactory parameter set thus far discovered is the following:

$$
\begin{align*}
& A=7.049556277, \quad B=0.6022245584 \\
& p=4, \quad q=0, \quad a=1.80 \tag{2.7}\\
& \lambda=21.0, \quad \gamma=1.20
\end{align*}
$$

Classical Interatomic Potentials:
 $$
E(r)=\sum_{\ell} E_{\ell}\left(\left\{r_{\ell k}\right\}_{r_{r k}<r_{\text {rut }}}\right)
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\ \ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \quad \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
$$

Not systematically improvable...
Machine Learning:

$$
E_{\ell}(\boldsymbol{r})=E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta})
$$

universal approximator

Classical Interatomic Potentials:
 $$
E(r)=\sum_{\ell} E_{\ell}\left(\left\{r_{\ell k}\right\}_{r_{l k}<r_{\text {att }}}\right)
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\ \ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \quad \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
$$

Not systematically improvable...
Behler, Parrinello. Phys. Rev. Lett. 98 (2007)
Machine Learning:

$$
\begin{aligned}
& E_{\ell}(\boldsymbol{r})= E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
& \\
& \text { neural network }
\end{aligned}
$$

Classical Interatomic Potentials:
 $$
E(r)=\sum_{\ell} E_{\ell}\left(\left\{r_{\ell k}\right\}_{r_{l k}<r_{\text {att }}}\right)
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\ \ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \quad \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
$$

Not systematically improvable...
Machine Learning:

Behler, Parrinello. Phys. Rev. Lett. 98 (2007)
Bartok, Kondor, Csanyi. Phys. Rev. Lett. 104 (2010)

$$
E_{\ell}(\boldsymbol{r})=E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta})
$$

kernel method

Classical Interatomic Potentials:
 $$
E(r)=\sum_{\ell} E_{\ell}\left(\left\{r_{\ell k}\right\}_{r_{l k}<r_{\text {att }}}\right)
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\ \ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \quad \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
$$

Not systematically improvable...

Machine Learning:

$$
E_{\ell}(\boldsymbol{r})=E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta})
$$

symmetric polynomials

Behler, Parrinello. Phys. Rev. Lett. 98 (2007)
Bartok, Kondor, Csanyi. Phys. Rev. Lett. 104 (2010) Braams, Bowman. Int. Rev. Phys. Chem. 28 (2009) Shapeev. Multiscale Model. Simul., 14 (2016)

Classical Interatomic Potentials:

$$
E(r)=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\text {ek }}<r_{\mathrm{cut}}}\right)
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
\begin{aligned}
& E_{\ell}(\boldsymbol{r})= \sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\
\ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \\
& \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
\end{aligned}
$$

Not systematically improvable...

Machine Learning:

$$
E_{\ell}(\boldsymbol{r})=E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta})
$$

Atomic cluster expansion (ACE)

Behler, Parrinello. Phys. Rev. Lett. 98 (2007)
Bartok, Kondor, Csanyi. Phys. Rev. Lett. 104 (2010)
Braams, Bowman. Int. Rev. Phys. Chem. 28 (2009)
Shapeev. Multiscale Model. Simul., 14 (2016)
Drautz. Phys. Rev. B 100 (2019)
Bachmayr et al. J. Comp. Phys. 454 (2022)

$$
E(\boldsymbol{r})=\sum_{\ell} \varepsilon\left(\boldsymbol{\theta} ;\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

Locality: Spatial Decomposition

Interatomic potentials

- Recall:

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

$$
E(\boldsymbol{r})=\sum_{\ell} \varepsilon\left(\boldsymbol{\theta} ;\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

- Recall:

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
E_{\ell}(\boldsymbol{r}):=[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

$$
E(\boldsymbol{r})=\sum_{\ell} \varepsilon\left(\boldsymbol{\theta} ;\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

- Recall:

$$
E(\boldsymbol{r})=\sum_{\ell} \varepsilon\left(\boldsymbol{\theta} ;\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r}) & :=[\mathcal{H} F(\mathcal{H})]_{\ell \ell} \\
& =\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i}
\end{aligned}
$$

- Recall:

$$
E(\boldsymbol{r})=\sum_{\ell} \varepsilon\left(\boldsymbol{\theta} ;\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r}) & :=[\mathcal{H} F(\mathcal{H})]_{\ell \ell} \\
& =\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i}
\end{aligned}
$$

- Recall:

$$
E(\boldsymbol{r})=\sum_{\ell} \varepsilon\left(\boldsymbol{\theta} ;\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r}) & :=[\mathcal{H} F(\mathcal{H})]_{\ell \ell} \\
& =\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i}
\end{aligned}
$$

- Recall:

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r}) & :=[\mathcal{H} F(\mathcal{H})]_{\ell \ell} \\
& =\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i} \\
& =\int_{\mathbb{R}} x F(x) \mathrm{d} D_{\ell}(x)
\end{aligned}
$$

$$
E(\boldsymbol{r})=\sum_{\ell} \varepsilon\left(\boldsymbol{\theta} ;\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

Locality: Spatial Decomposition

Tight-binding

$$
E(\boldsymbol{r})=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}=\sum_{\ell} E_{\ell}(\boldsymbol{r})
$$

$$
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\mathrm{cut}}}\right)
$$

Locality: Spatial Decomposition

Tight-binding

$$
E(\boldsymbol{r})=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}=\sum_{\ell} E_{\ell}(\boldsymbol{r})
$$

Interatomic potentials

$$
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\mathrm{cut}}}\right)
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z \mapsto z F(z)$,
- spectrum $\sigma(\mathcal{H})$.

Numerics

Locality: Spatial Decomposition

Tight-binding

$$
E(\boldsymbol{r})=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}=\sum_{\ell} E_{\ell}(\boldsymbol{r})
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z \mapsto z F(z)$,
- spectrum $\sigma(\mathcal{H})$.

Interatomic potentials

$$
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\mathrm{cut}}}\right)
$$

Locality: Spatial Decomposition

Tight-binding

Interatomic potentials

$$
E(\boldsymbol{r})=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}=\sum_{\ell} E_{\ell}(\boldsymbol{r})
$$

$$
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\mathrm{cut}}}\right)
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z \mapsto z F(z)$,
- spectrum $\sigma(\mathcal{H})$.
[Chen, Ortner. Multiscale Model. Simul., 2016]

[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018]
[Ortner, JT, Chen. ESAIM: M2AN, 2020] - estimates for point defects

Theorem:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z F(z)$,
- spectrum $\sigma(\mathcal{H})$.

$$
\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}=\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1} \frac{\partial \mathcal{H}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i}
$$

Theorem:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z F(z)$,
- spectrum $\sigma(\mathcal{H})$.

$$
\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}=\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1} \frac{\partial \mathcal{H}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}(z-\mathcal{H})^{-1}\right] \frac{d z}{2 \pi i}
$$

Theorem:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

Resolvent Estimates: Sketch for m-banded Hamiltonians

Same argument as before: for $m N<r_{\ell k}$,

$$
\begin{aligned}
\left|(z-\mathcal{H})_{\ell k}^{-1}\right| & =\min _{P_{N} \in \mathcal{P}_{N}}\left|\left[(z-\mathcal{H})^{-1}-P_{N}(\mathcal{H})\right]_{\ell k}\right| \\
& \leq \min _{P_{N} \in \mathcal{P}_{N}}\left\|(z-\cdot)^{-1}-P_{N}\right\|_{L^{\infty}(\sigma(\mathcal{H}))} \\
& \lesssim e^{-\frac{\gamma}{m} r_{\ell k}}
\end{aligned}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z F(z)$,
- spectrum $\sigma(\mathcal{H})$.
where $\gamma \sim \operatorname{dist}(z, \sigma(\mathcal{H})$.

Outline

(1) Introduction

(2) Locality of the density matrix

- Logarithmic potential theory
- Schwarz-Christoffel mappings
- Example
(3) Site energy decomposition
- Interatomic potentials
- Spatial decomposition

4 Body-ordered approximations

- Linear schemes
- Nonlinear schemes
- Examples

Body-ordered approximations

Interatomic potentials

$$
\begin{gathered}
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Body-ordered approximations

Locality: $E_{\ell}(\boldsymbol{r})=\varepsilon\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\mathrm{cut}}}\right)$

Interatomic potentials

$$
\begin{gathered}
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Body-ordered approximations

Locality: $E_{\ell}(\boldsymbol{r})=\varepsilon\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, ε is still high-dimensional

Interatomic potentials

$$
\begin{gathered}
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell}-\text { short-ranged \& "simple" }
\end{gathered}
$$

Body-ordered approximations

Locality: $E_{\ell}(\boldsymbol{r})=\varepsilon\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, ε is still high-dimensional Aim: Reduce the dimensionality further

Interatomic potentials

$$
\begin{gathered}
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Body-ordered approximations

$$
\begin{gathered}
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Locality: $E_{\ell}(\boldsymbol{r})=\varepsilon\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, ε is still high-dimensional
Aim: Reduce the dimensionality further
Body-ordered approximation:

$$
E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)
$$

Body-ordered approximations

Locality: $E_{\ell}(\boldsymbol{r})=\varepsilon\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, ε is still high-dimensional

$$
\begin{gathered}
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell}-\text { short-ranged \& "simple" }
\end{gathered}
$$

Aim: Reduce the dimensionality further

Body-ordered approximation:
$E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)$
"In view of the fact that the Si crystal consists of atoms held in place by strong and directional bonds, it seems reasonable at first sight that the corresponding Φ could be approximated by a combination of pair and triplet potentials, V_{1} and V_{2}."
— Stillinger, Weber. Phys. Rev. B 31 (1985)

Body-ordered approximations

Locality: $E_{\ell}(\boldsymbol{r})=\varepsilon\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, ε is still high-dimensional

$$
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta})
$$

$$
E_{\ell} \text { - short-ranged \& "simple" }
$$

Aim: Reduce the dimensionality further
Body-ordered approximation:
$E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)$
"In this so-called many-body expansion of Φ, it is usually believed that the series has a quick convergence, therefore, the higher moments may be neglected."

- Haliciogli, Pamuk, Erkoc. Phys Status Solidi B 149 (1988)

Body-ordered approximations

Locality: $E_{\ell}(\boldsymbol{r})=\varepsilon\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, ε is still high-dimensional Aim: Reduce the dimensionality further

$$
\begin{gathered}
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell}-\text { short-ranged \& "simple" }
\end{gathered}
$$

Body-ordered approximation:
$E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)$
"...the many-body potentials in general exhibit a rather slow convergence."
"It is sometimes argued that a potential expansion converges only slowly with respect to the order of the potentials and is thus impractical for use in molecular dynamics simulations."
— Drautz, Fähnle, Sanchez. J. Phys. Condens. Matter 16 (2004)

Body-ordered approximations

Locality: $E_{\ell}(\boldsymbol{r})=\varepsilon\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, ε is still high-dimensional

$$
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta})
$$

$$
E_{\ell} \text { - short-ranged \& "simple" }
$$

Aim: Reduce the dimensionality further
Body-ordered approximation:
$E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)$
"The convergence of the expansion is slow and, for example, for bulk metals potentials V_{K} up to $K \geq 15$ are required."
— Drautz. Phys. Rev. B 99 (2019)

Body-ordered approximations

Locality: $E_{\ell}(\boldsymbol{r})=\varepsilon\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, ε is still high-dimensional

$$
\begin{gathered}
E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell}-\text { short-ranged \& "simple" }
\end{gathered}
$$

Aim: Reduce the dimensionality further
Body-ordered approximation:

$$
E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)
$$

Based on the vacuum cluster expansion

"Incorporating environment information leads to exponential convergence" \Longrightarrow replace V_{n} with $V_{n N}$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

Recall

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
is a body-ordered
approximation to E_{ℓ}

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
is a body-ordered
approximation to E_{ℓ}

Claim:

$$
\begin{aligned}
& \left|E_{\ell}-E_{\ell}^{N}\right| \\
& \leq \sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

"convergence \leftrightarrow smoothness of ε "

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}$
["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]

Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
is a body-ordered
approximation to E_{ℓ}

Claim:

$$
\begin{aligned}
& \left|E_{\ell}-E_{\ell}^{N}\right| \\
& \leq \sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

"convergence \leftrightarrow smoothness of ε "

Example: Kernel Polynomial Method

Suppose $\varepsilon(x)=\sum_{n=0}^{\infty} c_{n} P_{n}(x)$ with $\int P_{n} P_{m} M \mathrm{~d} x=\delta_{n m}$,

$$
E_{\ell}(x) \approx \int K_{N} \star \varepsilon \mathrm{~d} D_{\ell}=\iint K_{N}(x, y) \varepsilon(y) \mathrm{d} y \mathrm{~d} D_{\ell}(x)
$$

$$
\text { where } K_{N}(x, y):=M(y) \sum_{n=0}^{N} P_{n}(x) P_{m}(y)
$$

Then, $E_{\ell}^{N}=\sum_{n=0}^{N} c_{n} P_{n}(\mathcal{H})_{\ell \ell}$
[Silver et al. J. Comp. Phys. 124 (1996)]

Theorem (JT, Chen, Ortner (2022))

There exists a linear $\Theta_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
\left|E_{\ell}(\boldsymbol{r})-\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)\right| \leq C e^{-\gamma_{N} N}
$$

where $\lim _{N \rightarrow \infty} \gamma_{N}=\gamma>0$, and $\gamma \sim \beta^{-1}+\sqrt{g_{-}} \sqrt{g_{+}}$.
However,

- Different Θ_{N} for different phases of the material
- Isolated eigenvalues in the gap affect the convergence rate
[Here, $\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)$ is body-ordered]

Nonlinear Schemes

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

Before: choose nodes $X=\left\{x_{j}\right\}_{j=0}^{N}$ and $\varepsilon_{N}:=I_{X} \varepsilon$:

$$
\begin{aligned}
& \begin{aligned}
E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell} & =\int \varepsilon_{N}(x) \mathrm{d} D_{\ell}(x)=\int I_{X} \varepsilon(x) \mathrm{d} D_{\ell}(x)=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right) \\
& =\int \varepsilon \mathrm{d} D_{\ell}^{N} \quad \text { where } \quad D_{\ell}^{N}:=\sum_{j=0}^{N} \omega_{j} \delta\left(\cdot-x_{j}\right)
\end{aligned} \\
& \text { and } \omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} .
\end{aligned}
$$

Nonlinear Schemes

Before: choose nodes $X=\left\{x_{j}\right\}_{j=0}^{N}$ and $\varepsilon_{N}:=I_{X} \varepsilon$:

$$
\begin{aligned}
& \begin{aligned}
E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell} & =\int \varepsilon_{N}(x) \mathrm{d} D_{\ell}(x)=\int I_{x} \varepsilon(x) \mathrm{d} D_{\ell}(x)=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right) \\
& =\int \varepsilon \mathrm{d} D_{\ell}^{N} \quad \text { where } \quad D_{\ell}^{N}:=\sum_{j=0}^{N} \omega_{j} \delta\left(\cdot-x_{j}\right)
\end{aligned} \\
& \text { and } \omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} .
\end{aligned}
$$

"Method of moments": Choose $D_{\ell}^{N}:=\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)$:

$$
\begin{aligned}
{\left[\mathcal{H}^{n}\right]_{\ell \ell} } & =\int x^{n} \mathrm{~d} D_{\ell}^{N} \quad \text { for all } n=0,1, \ldots, N \\
E_{\ell}^{N} & :=\int \varepsilon(x) \mathrm{d} D_{\ell}^{N}(x)
\end{aligned}
$$

Nonlinear schemes: Error estimates
 $E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}$

- "Method of moments". Find D_{ℓ}^{N} such that

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}^{N}(x) \quad(n=0,1, \ldots, N) \quad \longrightarrow \quad E_{\ell}^{N}(\boldsymbol{r}):=\int \varepsilon \mathrm{d} D_{\ell}^{N},
$$

Nonlinear schemes: Error estimates $\quad E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}$

- "Method of moments". Find D_{ℓ}^{N} such that

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}^{N}(x) \quad(n=0,1, \ldots, N) \quad \longrightarrow \quad E_{\ell}^{N}(\boldsymbol{r}):=\int \varepsilon \mathrm{d} D_{\ell}^{N},
$$

- Then

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right|=\quad\left|\int \varepsilon \quad \mathrm{d}\left(D_{\ell}-D_{\ell}^{N}\right)\right|
$$

Nonlinear schemes: Error estimates
 $E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}$

- "Method of moments". Find D_{ℓ}^{N} such that

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}^{N}(x) \quad(n=0,1, \ldots, N) \quad \longrightarrow \quad E_{\ell}^{N}(\boldsymbol{r}):=\int \varepsilon d D_{\ell}^{N},
$$

- Then
$\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right|=\min _{\varepsilon_{N} \in \mathcal{P}_{N}}\left|\int\left(\varepsilon-\varepsilon_{N}\right) \mathrm{d}\left(D_{\ell}-D_{\ell}^{N}\right)\right|$
[$\mathcal{P}_{N}=$ polynomials degree $\left.N\right]$

Nonlinear schemes: Error estimates
 $$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

- "Method of moments". Find D_{ℓ}^{N} such that

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}^{N}(x) \quad(n=0,1, \ldots, N) \quad \longrightarrow \quad E_{\ell}^{N}(\boldsymbol{r}):=\int \varepsilon d D_{\ell}^{N},
$$

- Then

$$
\begin{aligned}
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| & =\min _{\varepsilon_{N} \in \mathcal{P}_{N}}\left|\int\left(\varepsilon-\varepsilon_{N}\right) \mathrm{d}\left(D_{\ell}-D_{\ell}^{N}\right)\right| \\
& \leq\left\|D_{\ell}-D_{\ell}^{N}\right\|_{\mathrm{TV}} \min _{\varepsilon_{N} \in \mathcal{P}_{N}}\left\|\varepsilon-\varepsilon_{N}\right\|_{L \infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)
\end{aligned}
$$

[$\mathcal{P}_{N}=$ polynomials degree $\left.N\right]$
$E_{\ell}=\Theta_{N}\left(\mathcal{H}_{\ell e}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell e}\right)$

Linear schemes:

- Chebyshev projection
\longrightarrow Kernel polynomial method ${ }^{1}$
- Newton-Cotes quadrature (equispaced nodes)
- Clenshaw-Curtis quadrature (Chebyshev nodes)
- General quadrature (with $\nu_{N} \rightharpoonup^{\star} \omega_{\Sigma}$)

Nonlinear schemes:

- Maximum entropy method ${ }^{2}$ More
- Recursion method ${ }^{3}$: spectral measure corresponding to truncated tridiagonalisation of \mathcal{H} More \longrightarrow bond order potentials ${ }^{4}$
- Gauss quadrature More \longrightarrow linear-scaling spectral Gauss quadrature ${ }^{5}$

[^0]Theorem (JT, Chen, Ortner (2022))
There exists a linear $\Theta_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
\left|E_{\ell}(\boldsymbol{r})-\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)\right| \leq C e^{-\gamma_{N} N}
$$

where $\lim _{N \rightarrow \infty} \gamma_{N}=\gamma>0$, and $\gamma \sim g_{\text {def }}+\beta^{-1}$.

However,

- Different Θ_{N} for different phases of the material
- Eigenvalues in the gap affect the convergence rate

Theorem (JT, Chen, Ortner (2022))
There exists a linear $\Theta_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
\left|E_{\ell}(\boldsymbol{r})-\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)\right| \leq C e^{-\gamma_{N} N}
$$

where $\lim _{N \rightarrow \infty} \gamma_{N}=\gamma>0$, and $\gamma \sim g_{\text {def }}+\beta^{-1}$.

Theorem (JT, Chen, Ortner (2022))

Fix N odd. There exist $U \subset \mathbb{C}^{N}$ and an analytic function $\Theta_{N}: U \rightarrow \mathbb{C}$ such that

$$
\left|E_{\ell}(\boldsymbol{r})-\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)\right| \leq C e^{-\eta_{N} N}
$$

where $\lim _{N \rightarrow \infty} \eta_{N}=\eta>0$, and $\eta \sim g+\beta^{-1}$.
Now,

- Θ_{N} is a "universal" nonlinearity
- Eigenvalues in the gap do not affect the convergence rates

However,

- Different Θ_{N} for different phases of the material
- Eigenvalues in the gap affect the convergence rate

Outline

(1) Introduction

(2) Locality of the density matrix

- Logarithmic potential theory
- Schwarz-Christoffel mappings
- Example
(3) Site energy decomposition
- Interatomic potentials
- Spatial decomposition
(4) Body-ordered approximations
- Linear schemes
- Nonlinear schemes
- Examples
(5) Conclusions

Conclusions

- $E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r})$
- Local pieces \longrightarrow transferability
- QM/MM schemes: size of the QM region $\sim \eta$
[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]
- Thermodynamic limit problems
[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018], [Ortner, JT. Math. Model. Methods Appl. Sci., 2020]

Conclusions

- $E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r})$
- Local pieces \longrightarrow transferability
- QM/MM schemes: size of the QM region $\sim \eta$
[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]
- Thermodynamic limit problems
[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018], [Ortner, JT. Math. Model. Methods Appl. Sci., 2020]
- $E_{\ell}(\boldsymbol{r}) \approx \sum_{n=0}^{N} \sum_{\ell_{1}, \ldots, \ell_{n} \neq \ell} V_{n N}\left(\boldsymbol{r}_{\ell \ell_{1}}, \ldots, \boldsymbol{r}_{\ell \ell_{n}}\right)$,
- e.g. Linear Atomic Cluster Expansion (ACE)

Conclusions

- $E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r})$
- Local pieces \longrightarrow transferability
- QM/MM schemes: size of the QM region $\sim \eta$
[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]
- Thermodynamic limit problems
[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018],
[Ortner, JT. Math. Model. Methods Appl. Sci., 2020]
- $E_{\ell}(\boldsymbol{r}) \approx \sum_{n=0}^{N} \sum_{\ell_{1}, \ldots, \ell_{n} \neq \ell} V_{n N}\left(\boldsymbol{r}_{\ell \ell_{1}}, \ldots, \boldsymbol{r}_{\ell \ell_{n}}\right)$,
- e.g. Linear Atomic Cluster Expansion (ACE)
- There exists Θ_{N} "universal" with

$$
E_{\ell}(\boldsymbol{r}) \approx \Theta_{N}\left(\phi_{1}, \ldots, \phi_{N}\right)
$$

where ϕ_{n} are linear body-ordered.

- Nonlinear ACE

Body-Ordered Approximations of Atomic Properties

Also in the paper:
Jack Thomas®, Huajie Chen \& Christoph Ortner

- Classical vacuum cluster expansion [reasons for slow convergence]
- Analysis of bond-order potentials (BOP), [Recursion method with possibly different terminators]
- (partial) Justification for linear-scaling spectral Gauss quadrature, [Approximation of $\rho=F(\mathcal{H}[\rho])$ with $\rho_{N}=F_{N}\left(\mathcal{H}\left[\rho_{N}\right]\right)$]
- Truncation operators and connection to divide-and-conquer methods

What we couldn't prove (yet?):

- Forces converge in the linear schemes

$$
\left|\frac{\partial E_{\ell}}{\partial \boldsymbol{r}_{k}}-\frac{\partial E_{\ell}^{N}}{\partial \boldsymbol{r}_{k}}\right| \lesssim e^{-\gamma r_{\ell k}} e^{-\eta N}
$$

- But, this is a lot less obvious in the nonlinear schemes
- True if D_{ℓ} has "regular $n^{\text {th }}$ root asymptotic behaviour':

$$
\lim _{n \rightarrow \infty}\left|p_{n}\left(z ; D_{\ell}\right)\right|^{\frac{1}{n}}=e^{g_{\operatorname{supp} D_{\ell}}(z)}
$$

locally uniformly on $\mathbb{C} \backslash \operatorname{conv} \operatorname{supp} D_{\ell}$

- "Proof"

$$
\left|\frac{\partial E_{\ell}}{\partial \boldsymbol{r}_{k}}-\frac{\partial E_{\ell}^{N}}{\partial \boldsymbol{r}_{k}}\right| \lesssim\left[\sum_{n=0}^{\infty} \sum_{l=0}^{n}\left\|p_{l}\right\|_{L^{\infty}(\mathscr{C})}^{2} e^{-\eta_{1} n}\right] e^{-\eta_{2} N} e^{-\gamma r_{\ell k}}
$$

(1) Introduction
(2) Locality of the density matrix

- Logarithmic potential theory
- Schwarz-Christoffel mappings
- Example
(3) Site energy decomposition
- Interatomic potentials
- Spatial decomposition
(4) Body-ordered approximations
- Linear schemes
- Nonlinear schemes
- Examples
(5) Conclusions

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]

Proof

$$
\begin{aligned}
\left|E_{\ell}-E_{\ell}^{N}\right| & =\left|\left[\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right]_{\ell \ell}\right| \\
& \leq\left\|\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right\|_{\ell^{2} \rightarrow \ell^{2}} \\
& =\sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$ is a body-ordered approximation to E_{ℓ}

Proof

$$
\begin{aligned}
\left|E_{\ell}-E_{\ell}^{N}\right| & =\left|\left[\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right]_{\ell \ell}\right| \\
& \leq\left\|\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right\|_{\ell^{2} \rightarrow \ell^{2}} \\
& =\sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$ is a body-ordered approximation to E_{ℓ}

Claim:

$$
\begin{aligned}
& \left|E_{\ell}-E_{\ell}^{N}\right| \\
& \leq \sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

"convergence \leftrightarrow smoothness of ε "

Proof

$$
\begin{aligned}
\left|E_{\ell}-E_{\ell}^{N}\right| & =\left|\left[\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right]_{\ell \ell}\right| \\
& \leq\left\|\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right\|_{\ell^{2} \rightarrow \ell^{2}} \\
& =\sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}$
["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]

Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
is a body-ordered
approximation to E_{ℓ}

Claim:

$$
\begin{aligned}
& \left|E_{\ell}-E_{\ell}^{N}\right| \\
& \leq \sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

"convergence \leftrightarrow smoothness of ε "

Example: Kernel Polynomial Method

Suppose $\varepsilon(x)=\sum^{\infty} c_{n} P_{n}(x)$ with $\int P_{n} P_{m} M d x=\delta_{n m}$, Proof

$$
\begin{aligned}
E_{\ell}\left(\quad\left|E_{\ell}-E_{\ell}^{N}\right|\right. & =\left|\left[\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right]_{\ell \ell}\right| \\
& \leq\left\|\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right\|_{\ell^{2} \rightarrow \ell^{2}} \\
& =\sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

$$
D_{\ell}(x)
$$

Then
$\Sigma=[-1, a] \cup[b, 1]$
Define $g_{\Sigma}(z):=\operatorname{Re} G_{\Sigma}(z)$ where

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.
$z_{3} \in[a, b]$ s.t. $G_{\Sigma}(a)=G_{\Sigma}(b)$

$$
z_{3}=\frac{\int_{a}^{b} \frac{\zeta}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta}{\int_{a}^{b} \frac{1}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta}
$$

$\Sigma=[-1, a] \cup[b, 1]$

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.

for some $z_{3} \in[a, b]$

$$
z_{3} \in[a, b] \text { s.t. } G_{\Sigma}(a)=G_{\Sigma}(b)
$$

$$
z_{3}=\frac{\int_{a}^{b} \frac{\zeta}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta}{\int_{a}^{b} \frac{1}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta}
$$

Spectrum of the Hamiltonian

Spectrum of the Hamiltonian

$$
\begin{aligned}
&\left\{\ell:\left|\boldsymbol{r}_{\ell}^{\text {def }}\right| \leq R_{\text {def }}\right\} \quad \text { finite } \\
& \sup _{\ell:\left|\boldsymbol{r}_{\ell}\right|>R_{\text {def }}}\left|\boldsymbol{r}_{\ell}^{\text {def }}-\boldsymbol{r}_{\ell}\right| \leq \delta
\end{aligned}
$$

Spectrum of the Hamiltonian: Insulators

$\sigma\left(\mathcal{H}\left(\boldsymbol{r}^{\mathrm{def}}\right)\right)=$
| $\xrightarrow[\|]{ }$

Spectrum of the Hamiltonian: Insulators

Locality:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta\left|\boldsymbol{r}_{k}\right|}
$$

$\sigma\left(\mathcal{H}\left(\boldsymbol{r}^{\text {def }}\right)\right)=$
|

Spectrum of the Hamiltonian: Insulators

Locality:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta\left|\boldsymbol{r}_{k}\right|}
$$

$\sigma\left(\mathcal{H}\left(\boldsymbol{r}^{\text {def }}\right)\right)=$

Spectrum of the Hamiltonian: Insulators

Locality:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta\left|\boldsymbol{r}_{\ell k}\right|}
$$

$\sigma\left(\mathcal{H}\left(\boldsymbol{r}^{\text {def }}\right)\right)=$

Improved estimate:

$$
\eta \sim \mathrm{g} \gg \mathrm{~g}^{\mathrm{def}}
$$

Green's Functions for Multiply Connected Domains via Conformal Mapping*

Mark Embree Lloyd N. Trefethen

Fig. 8 Illustration of the overconvergence phenomenon of Theorem 2(b) and Theorem 4. On the same two-polygon region as in Figure 3, a polynomial $p(z)$ is sought that approximates the values -1 on the hexagon and +1 on the square. For this figure, p is taken as the degree- 29 near-best approximation defined by interpolation in 30 pre-images of roots of unity in the unit circle under the conformal map $z=\Phi^{-1}(w)$ (eqs. (8) and (9)); a similar plot for the exactly optimal polynomial would not look much different. The figure shows $\operatorname{Re} p(z)$ by a blue-red color scale together with the polygons, the interpolation points, and the figure-8shaped critical level curve of the Green's function. Not just on the polygons themselves, but throughout the two lobes of the figure $-8, \operatorname{Re} p(z)$ comes close to the constant values -1 and +1 . Outside, it grows very fast.

Vacuum cluster expansion

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}
$$

Vacuum cluster expansion

$E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}$
$V_{0}=E(\emptyset)$

Vacuum cluster expansion

$E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}$

$$
\begin{aligned}
V_{0} & =E(\emptyset) \\
V_{1}\left(\boldsymbol{r}_{1}\right) & =E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset)
\end{aligned}
$$

Vacuum cluster expansion

$E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}$

$$
\begin{aligned}
V_{0} & =E(\emptyset) \\
V_{1}\left(\boldsymbol{r}_{1}\right) & =E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) & =E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset)
\end{aligned}
$$

Vacuum cluster expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& V_{0}=E(\emptyset) \\
& V_{1}\left(\boldsymbol{r}_{1}\right)=E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
& V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset) \\
& \vdots \\
& V_{N}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=\sum_{K \subseteq\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right\}}(-1)^{N-|K|} E(K)
\end{aligned}
$$

Vacuum cluster expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& V_{0}=E(\emptyset) \\
& V_{1}\left(\boldsymbol{r}_{1}\right)=E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
& V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset)
\end{aligned}
$$

$$
V_{N}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=\sum_{K \subseteq\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right\}}(-1)^{N-|K|} E(K)
$$

Then,

$$
E\left(\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\}\right) \approx \sum_{n=0}^{N} \sum_{j_{1}<\cdots<j_{n}} V_{n}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{n}}\right)
$$

Exact for $N=J$.

Vacuum cluster expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& V_{0}=E(\emptyset) \\
& V_{1}\left(\boldsymbol{r}_{1}\right)=E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
& V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset)
\end{aligned}
$$

$$
\vdots
$$

$$
V_{N}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=\sum_{K \subseteq\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right\}}(-1)^{N-|K|} E(K)
$$

Then,

$$
E\left(\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\}\right) \approx \sum_{n=0}^{N} \sum_{j_{1}<\cdots<j_{n}} V_{n}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{n}}\right)
$$

"An intuitive explanation for this slow convergence is that we are building an interaction law for a condensed or possibly even crystalline phase material from clusters in vacuum where the bonding chemistry is significantly different."

Exact for $N=J$.

Vacuum cluster expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& V_{0}=E(\emptyset) \\
& V_{1}\left(\boldsymbol{r}_{1}\right)=E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
& V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset)
\end{aligned}
$$

$$
V_{N}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=\sum_{K \subseteq\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right\}}(-1)^{N-|K|} E(K)
$$

Then,

$$
E\left(\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\}\right) \approx \sum_{n=0}^{N} \sum_{j_{1}<\cdots<j_{n}} V_{n}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{n}}\right)
$$

"An intuitive explanation for this slow convergence is that we are building an interaction law for a condensed or possibly even crystalline phase material from clusters in vacuum where the bonding chemistry is significantly different."
Exact for $N=J$.

Numerical experiments: "defect-free"

- Approximation domain $E_{1}=[-1,-0.2] \cup[0.2,1]$

Numerical experiments: with defect

- Approximation domain $E_{2}=E_{1} \cup[-0.06,-0.03]$

Maximum entropy method

- Fix $[a, b] \supset \sigma(\mathcal{H})$, maximise

$$
S(P):=-\int_{a}^{b}[P(x) \log P(x)-P(x)] \mathrm{d} x+\sum_{n=0}^{N} \lambda_{n}\left(\int_{a}^{b} x^{n} P(x) \mathrm{d} x-\left[\mathcal{H}^{n}\right]_{\ell \ell}\right)
$$

- Leads to

$$
P_{N}(x)=e^{-\sum_{n=0}^{N} \lambda_{n} x^{n}} \quad \text { s.t. first } N \text { moments }
$$

- Moreover, if $\left\{\left(\mathcal{H}^{n}\right)_{\ell \ell}\right\}$ is completely monotone, then $\exists!P$.

(2,1,0)	

$(2,1,1)$

$(4,0,0)$

$(3,0,0)$

$(3,1,0)$

Hydrogen Wave Function
$\psi_{n l m}(r, \vartheta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!}} e^{-\rho / 2} \rho^{l} L_{n-l-1}^{2 l+1}(\rho) \cdot Y_{l m}(\vartheta, \varphi)$

$(4,3,2)$

Nonlinear schemes: Recursion method

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ} :

$$
b_{n+1} p_{n+1}(x)=\left(x-a_{n}\right) p_{n}(x)-b_{n} p_{n-1}(x) \quad[\text { Lanczos recursion }]
$$

define

$$
T_{N}:=\left(\begin{array}{cccc}
a_{0} & b_{1} & & \\
b_{1} & a_{1} & \ddots & \\
& \ddots & \ddots & b_{N} \\
& & b_{N} & a_{N}
\end{array}\right)=\left(\int p_{i}(x) \times p_{j}(x) \mathrm{d} D_{\ell}(x)\right)_{0 \leq i, j \leq N},
$$

Nonlinear schemes: Recursion method

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ} :

$$
b_{n+1} p_{n+1}(x)=\left(x-a_{n}\right) p_{n}(x)-b_{n} p_{n-1}(x) \quad[\text { Lanczos recursion }]
$$

define

$$
T_{N}:=\left(\begin{array}{cccc}
a_{0} & b_{1} & & \\
b_{1} & a_{1} & \ddots & \\
& \ddots & \ddots & b_{N} \\
& & b_{N} & a_{N}
\end{array}\right)=\left(\int p_{i}(x) \times p_{j}(x) \mathrm{d} D_{\ell}(x)\right)_{0 \leq i, j \leq N},
$$

- $\left[\mathcal{H}^{n}\right]_{\ell \ell}=\left[\left(T_{N}\right)^{n}\right]_{00}$ for all $n \leq 2 N+1$,

Nonlinear schemes: Recursion method

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ} :

$$
b_{n+1} p_{n+1}(x)=\left(x-a_{n}\right) p_{n}(x)-b_{n} p_{n-1}(x) \quad \text { [Lanczos recursion] }
$$

define

$$
T_{N}:=\left(\begin{array}{cccc}
a_{0} & b_{1} & & \\
b_{1} & a_{1} & \ddots & \\
& \ddots & \ddots & b_{N} \\
& & b_{N} & a_{N}
\end{array}\right)=\left(\int p_{i}(x) \times p_{j}(x) \mathrm{d} D_{\ell}(x)\right)_{0 \leq i, j \leq N},
$$

- $\left[\mathcal{H}^{n}\right]_{\ell \ell}=\left[\left(T_{N}\right)^{n}\right]_{00}$ for all $n \leq 2 N+1$,
- D_{ℓ}^{N} - spectral measure of T_{N} s.t. $E_{\ell}^{N}:=\varepsilon\left(T_{N}\right)_{00}$

Nonlinear schemes: Recursion method

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ} :

$$
b_{n+1} p_{n+1}(x)=\left(x-a_{n}\right) p_{n}(x)-b_{n} p_{n-1}(x) \quad[\text { Lanczos recursion }]
$$

define

$$
T_{N}:=\left(\begin{array}{cccc}
a_{0} & b_{1} & & \\
b_{1} & a_{1} & \ddots & \\
& \ddots & \ddots & b_{N} \\
& & b_{N} & a_{N}
\end{array}\right)=\left(\int p_{i}(x) x p_{j}(x) \mathrm{d} D_{\ell}(x)\right)_{0 \leq i, j \leq N},
$$

- $\left[\mathcal{H}^{n}\right]_{\ell \ell}=\left[\left(T_{N}\right)^{n}\right]_{00}$ for all $n \leq 2 N+1$,
- D_{ℓ}^{N} - spectral measure of T_{N} s.t. $E_{\ell}^{N}:=\varepsilon\left(T_{N}\right)_{00}$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

If $\operatorname{supp}\left(D_{\ell}\right) \cap[a, b]=\emptyset$, then $\left|\operatorname{supp}\left(D_{\ell}^{N}\right) \cap[a, b]\right| \leq 1$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

If $\operatorname{supp}\left(D_{\ell}\right) \cap[a, b]=\emptyset$, then $\left|\operatorname{supp}\left(D_{\ell}^{N}\right) \cap[a, b]\right| \leq 1$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,
- Can show $\omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} \geq 0$ and $\sum_{j} \omega_{j}=1 \Longrightarrow$

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,
- Can show $\omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} \geq 0$ and $\sum_{j} \omega_{j}=1 \Longrightarrow$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,
- Can show $\omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} \geq 0$ and $\sum_{j} \omega_{j}=1 \Longrightarrow$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,
- Can show $\omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} \geq 0$ and $\sum_{j} \omega_{j}=1 \Longrightarrow$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

- Can show that $E_{\ell}^{N}=\Theta\left(\mathcal{H}_{\ell \ell}, \ldots,\left(\mathcal{H}^{2 N+1}\right)_{\ell \ell}\right)$ where $\Theta: \mathbb{C}^{2 N+1} \rightarrow \mathbb{C}$ is analytic in open neighbourhoods of "admissible moment sequences"

Numerical Experiments

[Ortner, JT, Chen. ESAIM: M2AN, 2020]

Numerical Experiments

[Ortner, JT, Chen. ESAIM: M2AN, 2020]
(a) Decay of site energy derivatives.

(Kohn-Sham) Density Functional Theory

- Notation: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ,

(Kohn-Sham) Density Functional Theory

- Notation: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ,
- Schrödinger eq. \rightsquigarrow Kohn-Sham equations

$$
\mathcal{H}^{\mathrm{KS}} \psi_{n}:=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x)
$$

(Kohn-Sham) Density Functional Theory

- Notation: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ,
- Schrödinger eq. \rightsquigarrow Kohn-Sham equations

$$
\mathcal{H}^{\mathrm{KS}} \psi_{n}:=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2}
$$

（Kohn－Sham）Density Functional Theory

－Notation：$\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ ，
－Schrödinger eq．\rightsquigarrow Kohn－Sham equations

$$
\mathcal{H}^{\mathrm{KS}} \psi_{n}:=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2}
$$

$$
F=
$$

（Kohn－Sham）Density Functional Theory

－Notation：$\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ ，
－Schrödinger eq．\rightsquigarrow Kohn－Sham equations

$$
\begin{aligned}
\mathcal{H}^{\mathrm{KS}} \psi_{n} & :=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2} \\
V_{\mathrm{eff}}(x ; \rho) & :=\int \frac{\rho(y)}{|x-y|} \mathrm{d} y-\sum_{m} \frac{Z_{m}}{\left|x-\boldsymbol{r}_{m}\right|}+V_{\mathrm{xc}}(x ; \rho)
\end{aligned}
$$

$$
F=
$$

（Kohn－Sham）Density Functional Theory

－Notation：$\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ ，
－Schrödinger eq．\rightsquigarrow Kohn－Sham equations

$$
\begin{aligned}
\mathcal{H}^{\mathrm{KS}} \psi_{n} & :=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2} \\
V_{\mathrm{eff}}(x ; \rho) & :=\int \frac{\rho(y)}{|x-y|} \mathrm{d} y-\sum_{m} \frac{Z_{m}}{\left|x-\boldsymbol{r}_{m}\right|}+V_{\mathrm{xc}}(x ; \rho),
\end{aligned}
$$

－Energy

$$
E^{K S}[\rho]=\sum_{n} F\left(\lambda_{n}\right) \lambda_{n}+\ldots
$$

$$
F=
$$

(Kohn-Sham) Density Functional Theory

- Notation: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ,
- Schrödinger eq. \rightsquigarrow Kohn-Sham equations

$$
\begin{aligned}
\mathcal{H}^{\mathrm{KS}} \psi_{n} & :=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2} \\
V_{\mathrm{eff}}(x ; \rho) & :=\int \frac{\rho(y)}{|x-y|} \mathrm{d} y-\sum_{m} \frac{Z_{m}}{\left|x-\boldsymbol{r}_{m}\right|}+V_{\mathrm{xc}}(x ; \rho),
\end{aligned}
$$

- Energy

$$
E^{K S}[\rho]=\sum_{n} F\left(\lambda_{n}\right) \lambda_{n}+\ldots
$$

$$
F=
$$

$$
F^{\beta}=
$$

DFT

Back

- Schrödinger eq. \rightsquigarrow Kohn-Sham equations

$$
\begin{aligned}
\mathcal{H}^{\mathrm{KS}} \psi_{n} & :=\left(-\frac{1}{2} \Delta+V_{\text {eff }}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2} \\
V_{\text {eff }}(x ; \rho) & :=\int \frac{\rho(y)}{|x-y|} \mathrm{d} y-\sum_{m} \frac{Z_{m}}{\left|x-\boldsymbol{r}_{m}\right|}+V_{\mathrm{xc}}(x ; \rho),
\end{aligned}
$$

- Energy

$$
\begin{aligned}
E^{K S}[\rho]= & \sum_{n} \lambda_{n} F\left(\lambda_{n}\right)-\int \rho(x) V_{\mathrm{eff}}(x ; \rho) \\
& +E_{\mathrm{xc}}[\rho]+\frac{1}{2} \iint \frac{\rho(x) \rho(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y-\sum_{m} Z_{m} \int \frac{\rho(x)}{\left|x-\boldsymbol{r}_{m}\right|} \mathrm{d} x+E_{Z Z}
\end{aligned}
$$

Aside: Metals at zero temperature

Periodic systems:

$$
F(\mathcal{H})_{i j}=\sum_{n} \int_{\boldsymbol{k} \in \mathcal{B}} F\left(\varepsilon_{n, \boldsymbol{k}}\right)\left[u_{n, \boldsymbol{k}}^{\star}\right]_{i}\left[u_{n, \boldsymbol{k}}\right]_{j} e^{-i \boldsymbol{k} \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)} \mathrm{d} \boldsymbol{k}
$$

Aside: Metals at zero temperature

Periodic systems:

$$
F(\mathcal{H})_{i j}=\sum_{n} \int_{\boldsymbol{k} \in \mathcal{B}} F\left(\varepsilon_{n, \boldsymbol{k}}\right)\left[u_{n, \boldsymbol{k}}^{\star}\right]_{i}\left[u_{n, \boldsymbol{k}}\right]_{j} e^{-\mathrm{i} \boldsymbol{k} \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)} \mathrm{d} \boldsymbol{k}
$$

Decay rate depends on the curvature of the Fermi surface $\left(\mathcal{S}:=\left\{\varepsilon_{n, k}=\varepsilon_{F}\right\}\right)$:
e.g. Free electron gas: $\quad\left|F(\mathcal{H})_{i j}\right| \lesssim r_{i j}^{-\frac{d+1}{2}}$

Aside: Metals at zero temperature

Periodic systems:

$$
F(\mathcal{H})_{i j}=\sum_{n} \int_{\boldsymbol{k} \in \mathcal{B}} F\left(\varepsilon_{n, \boldsymbol{k}}\right)\left[u_{n, \boldsymbol{k}}^{\star}\right]_{i}\left[u_{n, \boldsymbol{k}}\right]_{j} e^{-\mathrm{i} \boldsymbol{k} \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)} \mathrm{d} \boldsymbol{k}
$$

Decay rate depends on the curvature of the Fermi surface $\left(\mathcal{S}:=\left\{\varepsilon_{n, k}=\varepsilon_{\mathrm{F}}\right\}\right)$:

$$
\text { e.g. Free electron gas: } \quad\left|F(\mathcal{H})_{i j}\right| \lesssim r_{i j}^{-\frac{d+1}{2}}
$$

More generally, \mathcal{S} has $1 \leq k \leq d-1$ non-zero principal curvatures at points with normal in the direction $\pm\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)$ then

$$
F(\mathcal{H})_{i j} \lesssim r_{i j}^{-\left[\frac{k}{2}+1\right]}
$$

[^0]: ${ }^{1}$ [Silver, Roeder, Voter, Kress. J. Comput. Phys. 124 (1996)]
 ${ }^{2}$ [Mead, Papanicolaou. J. Math. Phys. 25 (1984)]
 ${ }^{3}$ [Haydock, Heine, Kelly. J. Phys. C 5 (1972), 8 (1975)]
 ${ }^{4}$ [Horsfield et al. Phys. Rev. B 53 (1996)]
 ${ }^{5}$ [Suryanarayana et al. J. Mech. Phys. Solids 61 (2013)]

