Body-ordered approximations of atomic properties

Jack Thomas

Joint work with Christoph Ortner (University of British Columbia) and Huajie Chen (Beijing Normal University)

Journée de rentrée de l'équipe AN-EDP, Octobre 2023

Motivation

Abstract: "We survey some recent results on the sparsity of the potential energy landscape (PEL) aimed to justify and extend the theory of machine-learning for interatomic potentials"

Interatomic potentials

Quantum Monte Carlo

Empirical QM

Coarse grained molecular

Density Functional Theory

Outline

(1) Introduction
(2) Locality
(3) Body-ordered approximation

- Linear schemes
- Nonlinear schemes
- Examples
(4) Polynomial Approximation
- Logarithmic potential theory
- Schwarz-Christoffel mappings
(5) Conclusions

Notation

$$
\boldsymbol{r}=\left\{\boldsymbol{r}_{\ell}\right\} \subset \mathbb{R}^{d}
$$

$$
\begin{aligned}
& \boldsymbol{r}=\left\{\boldsymbol{r}_{\ell}\right\} \subset \mathbb{R}^{d} \\
& r_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \\
& r_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
\end{aligned}
$$

Notation

Interatomic potentials:

$$
\begin{aligned}
& \boldsymbol{r}=\left\{\boldsymbol{r}_{\ell}\right\} \subset \mathbb{R}^{d} \\
& \boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \\
& r_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
\end{aligned}
$$

Classical Interatomic Potentials:

$$
\boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d} \text { - nuclei }
$$

$$
\boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \text { and } r_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
$$

Classical Interatomic Potentials:

$$
\boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei }
$$

$$
\boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \text { and } r_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)

Classical Interatomic Potentials:

$$
\begin{aligned}
& \boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei } \\
& \boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \text { and } \boldsymbol{r}_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
\end{aligned}
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

TABLE I. Quantities used for determination of the functions and their fitted values: lattice parameter a_{0}; elastic constants C_{11}, C_{12}, and C_{44}; sublimation energy E_{s}; vacancy formation energy $E_{1 V}{ }^{F}$; the energy difference between bec and fcc phases for Ni ; and the hydrogen heat of solution and migration energy in Ni.

	Experiment	Fit
$a_{0}(\AA)$	3.52^{a}	3.52
$C_{11}\left(10^{12}\right.$ dynes $\left./ \mathrm{cm}^{2}\right)$	2.465^{b}	2.452
$C_{12}\left(10^{12}\right.$ dynes $\left./ \mathrm{cm}^{2}\right)$	1.473^{b}	1.452
$C_{44}\left(10^{12}\right.$ dynes $\left./ \mathrm{cm}^{2}\right)$	1.247^{b}	1.233
$E_{s}(\mathrm{eV})$	4.45^{c}	4.45
$E_{\mathrm{fV}}(\mathrm{eV})$	1.4^{d}	1.43
$\left(E_{\mathrm{bcc}}-E_{\mathrm{fcc}}\right)(\mathrm{eV})$	0.06^{e}	0.14
H heat of solution (eV)	0.16^{f}	0.22
H migration energy (eV)	0.41^{g}	0.41

[^0]
Classical Interatomic Potentials:

$$
\boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei }
$$

$$
\boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \text { and } r_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\ \ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} . \quad \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
$$

Classical Interatomic Potentials:

$$
\boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei }
$$

$$
\boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \text { and } r_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\
\ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \\
\text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
\end{aligned}
$$

Overall, the most satisfactory parameter set thus far discovered is the following:

$$
\begin{align*}
& A=7.049556277, \quad B=0.6022245584 \\
& p=4, \quad q=0, \quad a=1.80 \tag{2.7}\\
& \lambda=21.0, \quad \gamma=1.20
\end{align*}
$$

Classical Interatomic Potentials:

$$
\begin{aligned}
& \boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei } \\
& \boldsymbol{r}_{\boldsymbol{\ell}}:=\boldsymbol{r}_{\boldsymbol{k}}-\boldsymbol{r}_{\ell} \text { and } \boldsymbol{r}_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
\end{aligned}
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\
\ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \\
\text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
\end{aligned}
$$

Not systematically improvable...

Overall, the most satisfactory parameter set thus far discovered is the following:

$$
\begin{align*}
& A=7.049556277, \quad B=0.6022245584 \\
& p=4, \quad q=0, \quad a=1.80 \tag{2.7}\\
& \lambda=21.0, \quad \gamma=1.20
\end{align*}
$$

Classical Interatomic Potentials:

$$
\begin{aligned}
& \boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei } \\
& \boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \text { and } r_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
\end{aligned}
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\
\ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \\
\text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
\end{aligned}
$$

Not systematically improvable...
Machine Learning:

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r})= & E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
& \quad \text { universal approximator }
\end{aligned}
$$

Classical Interatomic Potentials:

$$
\begin{aligned}
& \boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei } \\
& \boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \text { and } \boldsymbol{r}_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
\end{aligned}
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\
\ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \\
\text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
\end{aligned}
$$

Not systematically improvable...
Machine Learning:

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r})= & E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
& \text { neural network }
\end{aligned}
$$

Classical Interatomic Potentials:

$$
\begin{aligned}
& \boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei } \\
& \boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \text { and } \boldsymbol{r}_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
\end{aligned}
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\
\ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \\
\text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
\end{aligned}
$$

Not systematically improvable...

Behler, Parrinello. Phys. Rev. Lett. 98 (2007)
Bartok, Kondor, Csanyi. Phys. Rev. Lett. 104 (2010)

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r})= & E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
& \text { kernel method }
\end{aligned}
$$

Classical Interatomic Potentials:

$$
\begin{aligned}
& \boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei } \\
& \boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell} \text { and } \boldsymbol{r}_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
\end{aligned}
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
E_{\ell}(\boldsymbol{r})=\sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\ \ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} . \quad \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
$$

Not systematically improvable...

Behler, Parrinello. Phys. Rev. Lett. 98 (2007)
Machine Learning:

$$
\text { Bartok, Kondor, Csanyi. Phys. Rev. Lett. } 104 \text { (2010) }
$$

$$
\text { Braams, Bowman. Int. Rev. Phys. Chem. } 28 \text { (2009) }
$$

$$
E_{\ell}(\boldsymbol{r})=E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta})
$$

$$
\text { Shapeev. Multiscale Model. Simul., } 14 \text { (2016) }
$$

symmetric polynomials

Classical Interatomic Potentials:

$$
\begin{aligned}
& \boldsymbol{r}=\left\{\boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{d}-\text { nuclei } \\
& \boldsymbol{r}_{\boldsymbol{\ell k}}:=\boldsymbol{r}_{\boldsymbol{k}}-\boldsymbol{r}_{\ell} \text { and } \boldsymbol{r}_{\ell k}:=\left|\boldsymbol{r}_{\ell k}\right|
\end{aligned}
$$

Embedded Atom Method (EAM):

$$
E_{\ell}(\boldsymbol{r})=F\left(\sum_{k \neq \ell} \rho\left(r_{\ell k}\right)\right)+\frac{1}{2} \sum_{k \neq \ell} \phi\left(r_{\ell k}\right)
$$

Daw, Baskes. Phys. Rev. Lett. 50 (1983)
Daw, Baskes. Phys. Rev. B 29 (1984)
Stillinger-Weber:

$$
\begin{aligned}
& E_{\ell}(\boldsymbol{r})= \sum_{k \neq \ell} A\left(B r_{\ell k}^{-p}-r_{\ell k}^{-q}\right) f_{\mathrm{a}}\left(r_{\ell k}\right)+\sum_{\substack{k, m, n: \\
\ell \in\{k, m, n\}}} \lambda\left(\cos \theta_{k m n}+\frac{1}{3}\right)^{2} f_{a}\left(r_{m k}\right)^{\gamma} f_{a}\left(r_{m n}\right)^{\gamma} \\
& \text { Stillinger, Weber. Phys. Rev. B } 31 \text { (1985) }
\end{aligned}
$$

Not systematically improvable...

Behler, Parrinello. Phys. Rev. Lett. 98 (2007)
Machine Learning:

$$
E_{\ell}(\boldsymbol{r})=E_{\ell}(\boldsymbol{r} ; \boldsymbol{\theta})
$$

Atomic cluster expansion (ACE)

Bartok, Kondor, Csanyi. Phys. Rev. Lett. 104 (2010)
Braams, Bowman. Int. Rev. Phys. Chem. 28 (2009)
Shapeev. Multiscale Model. Simul., 14 (2016)
Drautz. Phys. Rev. B 100 (2019)
Dusson et al. J. Comp. Phys. 454 (2022)

Machine Learned IPs (MLIPs)

Atomic cluster expansion: Completeness, efficiency and stability
Geneviève Dusson ${ }^{\mathrm{a}, *}$, Markus Bachmayr ${ }^{\mathrm{b}}$, Gábor Csányi ${ }^{\mathrm{c}}$, Ralf Drautz ${ }^{\mathrm{d}}$, Simon Etter ${ }^{e}$, Cas van der Oord ${ }^{c}$, Christoph Ortner ${ }^{f}$

Machine Learned IPs (MLIPs)

Atomic cluster expansion: Completeness, efficiency and stability ${ }^{\text {NT}}$

Geneviève Dusson ${ }^{\text {a,* }}$, Markus Bachmayr ${ }^{\text {b }}$, Gábor Csányi ${ }^{\text {c }}$, Ralf Drautz ${ }^{\text {d }}$, Simon Etter ${ }^{e}$, Cas van der Oord ${ }^{c}$, Christoph Ortner ${ }^{f}$
"All interatomic potential models make various (often ad hoc) assumptions on the PES regarding low-rank structures and locality of interactions. In general, one aims to represent a complex fully many-body PES E (exactly or approximately) as a combination of "simple" components, e.g., low-dimensional or low-rank. Here, we shall assume that E can be written in the form of a body-order expansion,

$$
\begin{align*}
E\left(\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\}\right) & =\sum_{\ell=1}^{J} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right) \\
E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right) & =V_{0}+\sum_{k} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}<k_{2}} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}<\cdots<k_{N}} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{n}}\right), \tag{2.1}
\end{align*}
$$

with $\boldsymbol{r}_{\ell k}:=\boldsymbol{r}_{k}-\boldsymbol{r}_{\ell}, V_{0} \in \mathbb{R}$ and $N \in \mathbb{N}$ being the maximal order of interaction."

Outline

Goal: (Qualitative) justification for the MLIP assumptions
Proof: Polynomial approximation

Coarse grained molecular
$E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta})$
local decomposition
Quantum Monte Carlo into "simple" parts

Set-up

- Many-body Schrödinger equation: $\mathcal{H}_{\text {tot }} \Psi=E \Psi$

Set-up

- Many-body Schrödinger equation: $\mathcal{H}_{\text {tot }} \Psi=E \Psi$
- Born-Oppenheimer: solve for the electrons $\mathcal{H}_{\mathrm{BO}}=\mathcal{H}_{\mathrm{BO}}(\boldsymbol{r})$ [where $\boldsymbol{r}=\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N_{\mathrm{at}}}\right) \in\left(\mathbb{R}^{\boldsymbol{d}}\right)^{N_{\mathrm{at}}}$]

Set-up

- Many-body Schrödinger equation: $\mathcal{H}_{\text {tot }} \Psi=E \Psi$
- Born-Oppenheimer: solve for the electrons $\mathcal{H}_{\mathrm{BO}}=\mathcal{H}_{\mathrm{BO}}(\boldsymbol{r})$
[where $\boldsymbol{r}=\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N_{\mathrm{at}}}\right) \in\left(\mathbb{R}^{\boldsymbol{d}}\right)^{N_{\mathrm{at}}}$]
- Kohn-Sham equations:

$$
\begin{gathered}
\mathcal{H}^{\mathrm{KS}} \psi_{i}(x):=\left(-\frac{1}{2} \Delta+V(x)\right) \psi_{i}(x)=\varepsilon_{i} \psi_{i}(x) \\
\rho(x, y):=\sum_{i} F\left(\varepsilon_{i}\right) \psi_{i}^{\star}(x) \psi_{i}(y), \quad \rho(x):=\rho(x, x)
\end{gathered}
$$

where $F\left(\varepsilon_{i}\right)$ are the single particle occupation numbers $V=V[\rho] \rightsquigarrow$ self-consistent field,

Set-up

- Many-body Schrödinger equation: $\mathcal{H}_{\text {tot }} \Psi=E \Psi$
- Born-Oppenheimer: solve for the electrons $\mathcal{H}_{\mathrm{BO}}=\mathcal{H}_{\mathrm{BO}}(\boldsymbol{r})$
[where $\boldsymbol{r}=\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N_{\mathrm{at}}}\right) \in\left(\mathbb{R}^{\boldsymbol{d}}\right)^{N_{\mathrm{at}}}$]
- Kohn-Sham equations:

$$
\begin{gathered}
\mathcal{H}^{\mathrm{KS}} \psi_{i}(x):=\left(-\frac{1}{2} \Delta+V(x)\right) \psi_{i}(x)=\varepsilon_{i} \psi_{i}(x) \\
\rho(x, y):=\sum_{i} F\left(\varepsilon_{i}\right) \psi_{i}^{\star}(x) \psi_{i}(y), \quad \rho(x):=\rho(x, x)
\end{gathered}
$$

where $F\left(\varepsilon_{i}\right)$ are the single particle occupation numbers $V=V[\rho] \rightsquigarrow$ self-consistent field,

- Energy: $E^{\mathrm{KS}}[\rho]=\sum_{i} F\left(\varepsilon_{i}\right) \varepsilon_{i}+\ldots$

Set-up

[Take $S=$ id by considering

- Discretize: $\mathcal{H} \psi_{i}=\varepsilon_{i} \psi_{i}, \mathcal{H} \in\left(\mathbb{R}^{N_{\mathrm{b}} \times N_{\mathrm{b}}}\right)^{N_{\mathrm{at}} \times N_{\mathrm{at}}}$ where Löwdin transform: $S^{-T / 2} \mathcal{H} S^{1 / 2}$] Orbitals
Spectrum $\quad \mathcal{H}_{\ell k, a b}:=\int \phi_{\ell a}(x)\left[-\frac{1}{2} \Delta+V(x)\right] \phi_{k b}(x) \mathrm{d} x$
$\left\{\phi_{\ell a}\right\}_{a=1}^{N_{b}}$ - atom-centered localised basis functions at \boldsymbol{r}_{ℓ}

Set-up

[Take $S=$ id by considering

- Discretize: $\mathcal{H} \psi_{i}=\varepsilon_{i} \psi_{i}, \mathcal{H} \in\left(\mathbb{R}^{N_{\mathrm{b}} \times N_{\mathrm{b}}}\right)^{N_{\mathrm{at}} \times N_{\mathrm{at}}}$ where Spectrum

$$
\mathcal{H}_{\ell k, a b}:=\int \phi_{\ell a}(x)\left[-\frac{1}{2} \Delta+V(x)\right] \phi_{k b}(x) \mathrm{d} x
$$

$\left\{\phi_{\ell a}\right\}_{a=1}^{N_{\mathrm{b}}}$ - atom-centered localised basis functions at \boldsymbol{r}_{ℓ}

- Assume: $\left|\mathcal{H}_{\ell k}\right| \lesssim e^{-\gamma_{0} r_{\ell k}} \quad\left[r_{\ell k}:=\left|\boldsymbol{r}_{\ell}-\boldsymbol{r}_{k}\right|\right]$
- Band energy: $E:=\sum_{i} F\left(\varepsilon_{i}\right) \varepsilon_{i}=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))$

Löwdin transform: $S^{-T / 2} \mathcal{H} S^{1 / 2}$]

Matrix entries

Set-up

[Take $S=$ id by considering

- Discretize: $\mathcal{H} \psi_{i}=\varepsilon_{i} \psi_{i}, \mathcal{H} \in\left(\mathbb{R}^{N_{\mathrm{b}} \times N_{\mathrm{b}}}\right)^{N_{\mathrm{at}} \times N_{\mathrm{at}}}$ where Orbitals
Spectrum

$$
\mathcal{H}_{\ell k, a b}:=\int \phi_{\ell a}(x)\left[-\frac{1}{2} \Delta+V(x)\right] \phi_{k b}(x) \mathrm{d} x
$$

$\left\{\phi_{\ell a}\right\}_{a=1}^{N_{b}}$ - atom-centered localised basis functions at \boldsymbol{r}_{ℓ}

- Assume: $\left|\mathcal{H}_{\ell k}\right| \lesssim e^{-\gamma_{0} r_{\ell k}} \quad\left[r_{\ell k}:=\left|\boldsymbol{r}_{\ell}-\boldsymbol{r}_{k}\right|\right]$
- Band energy: $E:=\sum_{i} F\left(\varepsilon_{i}\right) \varepsilon_{i}=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))$

Löwdin transform: $S^{-T / 2} \mathcal{H} S^{1 / 2}$]

Matrix entries

$$
F=
$$

$$
F^{\beta}=
$$

Outline

Goal: (Qualitative) justification for the MLIP assumptions
Proof: Polynomial approximation

$$
E(\boldsymbol{r})=\sum_{i} F\left(\varepsilon_{i}\right) \varepsilon_{i}
$$

Quantum Monte Carlo

Coarse grained molecular
$E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta})$
local decomposition into "simple" parts

Outline

(1) Introduction

(2) Locality

(3) Body-ordered approximation

- Linear schemes
- Nonlinear schemes
- Examples
(4) Polynomial Approximation
- Logarithmic potential theory
- Schwarz-Christoffel mappings
(5) Conclusions

Interatomic potentials

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell} ; \boldsymbol{\theta}\right)
$$

Locality: Spatial Decomposition

Interatomic potentials

- Recall:

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell} ; \boldsymbol{\theta}\right)
$$

Locality: Spatial Decomposition

Interatomic potentials

- Recall:

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
E_{\ell}(\boldsymbol{r}):=[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell} ; \boldsymbol{\theta}\right)
$$

Locality: Spatial Decomposition

Interatomic potentials

- Recall:

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r}) & :=[\mathcal{H} F(\mathcal{H})]_{\ell \ell} \\
& =\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i}
\end{aligned}
$$

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell} ; \boldsymbol{\theta}\right)
$$

Locality: Spatial Decomposition

Interatomic potentials

- Recall:

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r}) & :=[\mathcal{H} F(\mathcal{H})]_{\ell \ell} \\
& =\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i}
\end{aligned}
$$

Locality: Spatial Decomposition

Interatomic potentials

- Recall:

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r}) & :=[\mathcal{H} F(\mathcal{H})]_{\ell \ell} \\
& =\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i}
\end{aligned}
$$

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell} ; \boldsymbol{\theta}\right)
$$

Locality: Spatial Decomposition

Interatomic potentials

- Recall:

$$
E(\boldsymbol{r})=\operatorname{Tr}(\mathcal{H} F(\mathcal{H}))=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}
$$

- Define the local observables as

$$
\begin{aligned}
E_{\ell}(\boldsymbol{r}) & :=[\mathcal{H} F(\mathcal{H})]_{\ell \ell} \\
& =\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i} \\
& =\int_{\mathbb{R}} x F(x) \mathrm{d} D_{\ell}(x)
\end{aligned}
$$

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell} ; \boldsymbol{\theta}\right)
$$

Locality: Spatial Decomposition

Tight-binding

$$
E(\boldsymbol{r})=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}=\sum_{\ell} E_{\ell}(\boldsymbol{r})
$$

Interatomic potentials

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\mathrm{cut}}}\right)
$$

Locality: Spatial Decomposition

Tight-binding

$$
E(\boldsymbol{r})=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}=\sum_{\ell} E_{\ell}(\boldsymbol{r})
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z \mapsto z F(z)$,
- spectrum $\sigma(\mathcal{H})$.

Numerics

Interatomic potentials

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\mathrm{cut}}}\right)
$$

Locality: Spatial Decomposition

Tight-binding

$$
E(\boldsymbol{r})=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}=\sum_{\ell} E_{\ell}(\boldsymbol{r})
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z \mapsto z F(z)$,
- spectrum $\sigma(\mathcal{H})$.

Interatomic potentials

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\mathrm{cut}}}\right)
$$

Locality: Spatial Decomposition

Tight-binding

$$
E(\boldsymbol{r})=\sum_{\ell}[\mathcal{H} F(\mathcal{H})]_{\ell \ell}=\sum_{\ell} E_{\ell}(\boldsymbol{r})
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z \mapsto z F(z)$,
- spectrum $\sigma(\mathcal{H})$.
[Chen, Ortner. Multiscale Model. Simul., 2016]

Interatomic potentials

$$
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\mathrm{cut}}}\right)
$$

Theorem:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z F(z)$,
- spectrum $\sigma(\mathcal{H})$.

$$
\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}=\oint_{\mathscr{C}} z F(z)\left[(z-\mathcal{H})^{-1} \frac{\partial \mathcal{H}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i}
$$

Theorem:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z F(z)$,
- spectrum $\sigma(\mathcal{H})$.

$$
\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}=\oint_{\mathscr{G}} z F(z)\left[(z-\mathcal{H})^{-1} \frac{\partial \mathcal{H}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}(z-\mathcal{H})^{-1}\right]_{\ell \ell} \frac{\mathrm{d} z}{2 \pi i}
$$

Theorem:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta r_{\ell k}}
$$

Resolvent Estimates: Sketch for m-banded Hamiltonians

Suppose $\mathcal{H}_{\ell k}=0$ for all $r_{\ell k}>m$.
Then, $\left[\mathcal{H}^{N}\right]_{\ell k}=0$ for all $r_{\ell k}>m N$:

$$
\begin{aligned}
\left|(z-\mathcal{H})_{\ell k}^{-1}\right| & =\min _{P_{N} \in \mathcal{P}_{N}}\left|\left[(z-\mathcal{H})^{-1}-P_{N}(\mathcal{H})\right]_{\ell k}\right| \\
& \leq \min _{P_{N} \in \mathcal{P}_{N}}\left\|(z-\cdot)^{-1}-P_{N}\right\|_{L^{\infty}(\sigma(\mathcal{H}))} \\
& \lesssim e^{-\gamma N}=e^{-\frac{\gamma}{m} r_{\ell k}}
\end{aligned}
$$

$\eta>0$ depends on:

- locality of \mathcal{H},
- analyticity of $z F(z)$,
- spectrum $\sigma(\mathcal{H})$.
where $\gamma \sim \operatorname{dist}(z, \sigma(\mathcal{H}))$.

Outline

(1) Introduction

- Locality
(3) Body-ordered approximation
- Linear schemes
- Nonlinear schemes
- Examples
(4) Polynomial Approximation
- Logarithmic potential theory
- Schwarz-Christoffel mappings
(5) Conclusions

Body-ordered approximations

Interatomic potentials

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Body-ordered approximations

Interatomic potentials

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Body-ordered approximations

Interatomic potentials

Locality: $E_{\ell}(\boldsymbol{r})=E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, E_{ℓ} is still high-dimensional

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Body-ordered approximations

Interatomic potentials

Locality: $E_{\ell}(\boldsymbol{r})=E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, E_{ℓ} is still high-dimensional
Aim: Reduce the dimensionality further

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Body-ordered approximations

Interatomic potentials

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell}-\text { short-ranged \& "simple" }
\end{gathered}
$$

Locality: $E_{\ell}(\boldsymbol{r})=E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, E_{ℓ} is still high-dimensional
Aim: Reduce the dimensionality further
Body-ordered approximation:

$$
E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)
$$

Body-ordered approximations

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Locality: $E_{\ell}(\boldsymbol{r})=E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, E_{ℓ} is still high-dimensional
Aim: Reduce the dimensionality further
Body-ordered approximation:

$$
E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)
$$

"In view of the fact that the Si crystal consists of atoms held in place by strong and directional bonds, it seems reasonable at first sight that the corresponding Φ could be approximated by a combination of pair and triplet potentials, V_{1} and V_{2}."
— Stillinger, Weber. Phys. Rev. B 31 (1985)

Body-ordered approximations

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Locality: $E_{\ell}(\boldsymbol{r})=E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, E_{ℓ} is still high-dimensional
Aim: Reduce the dimensionality further
Body-ordered approximation:

$$
E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)
$$

"In this so-called many-body expansion of Φ, it is usually believed that the series has a quick convergence, therefore, the higher moments may be neglected."

- Haliciogli, Pamuk, Erkoc. Phys Status Solidi B 149 (1988)

Body-ordered approximations

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Locality: $E_{\ell}(\boldsymbol{r})=E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, E_{ℓ} is still high-dimensional
Aim: Reduce the dimensionality further
Body-ordered approximation:

$$
E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)
$$

"...the many-body potentials in general exhibit a rather slow convergence."
"It is sometimes argued that a potential expansion converges only slowly with respect to the order of the potentials and is thus impractical for use in molecular dynamics simulations."
— Drautz, Fähnle, Sanchez. J. Phys. Condens. Matter 16 (2004)

Body-ordered approximations

Interatomic potentials

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell}-\text { short-ranged \& "simple" }
\end{gathered}
$$

Locality: $E_{\ell}(\boldsymbol{r})=E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, E_{ℓ} is still high-dimensional
Aim: Reduce the dimensionality further
Body-ordered approximation:

$$
E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)
$$

"The convergence of the expansion is slow and, for example, for bulk metals potentials V_{K} up to $K \geq 15$ are required."
— Drautz. Phys. Rev. B 99 (2019)

Body-ordered approximations

Interatomic potentials

$$
\begin{gathered}
E^{\mathrm{IP}}(\boldsymbol{r})=\sum_{\ell} E_{\ell}^{\mathrm{IP}}(\boldsymbol{r} ; \boldsymbol{\theta}) \\
E_{\ell} \text { - short-ranged \& "simple" }
\end{gathered}
$$

Locality: $E_{\ell}(\boldsymbol{r})=E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)+\mathcal{O}\left(e^{-\eta r_{\text {cut }}}\right)$ In practice, E_{ℓ} is still high-dimensional
Aim: Reduce the dimensionality further
Body-ordered approximation:

$$
E_{\ell}(\boldsymbol{r}) \approx V_{0}+\sum_{k \neq \ell} V_{1}\left(\boldsymbol{r}_{\ell k}\right)+\sum_{k_{1}, k_{2} \neq \ell} V_{2}\left(\boldsymbol{r}_{\ell k_{1}}, \boldsymbol{r}_{\ell k_{2}}\right)+\cdots+\sum_{k_{1}, \ldots, k_{N} \neq \ell} V_{N}\left(\boldsymbol{r}_{\ell k_{1}}, \ldots, \boldsymbol{r}_{\ell k_{N}}\right)
$$

"Incorporating environment information leads to exponential convergence" \Longrightarrow replace V_{n} with $V_{n N}$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
is a body-ordered
approximation to E_{ℓ}

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
is a body-ordered
approximation to E_{ℓ}

Claim:

$$
\begin{aligned}
& \left|E_{\ell}-E_{\ell}^{N}\right| \\
& \leq \sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

"convergence \leftrightarrow smoothness of ε "

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
is a body-ordered
approximation to E_{ℓ}

Claim:

$$
\begin{aligned}
& \left|E_{\ell}-E_{\ell}^{N}\right| \\
& \leq \sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

"convergence \leftrightarrow smoothness of ε "

Linear schemes: $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
Recall:

Idea \#1: Upper Bounds

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq\left\|\varepsilon-\varepsilon_{N}\right\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

- Finite temperature $(\beta<\infty)$: Chebyshev projection

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq \frac{2\|\varepsilon\|_{L^{\infty}\left(\mathcal{E}_{\chi}\right)}}{\chi-1} \chi^{-N}
$$

where F is analytic on \mathcal{E}_{χ}.
[Proof: Chebyshev coefficients decay exponentially depending on region of analyticity]

Linear schemes: $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
Recall:

Idea \#1: Upper Bounds

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq\left\|\varepsilon-\varepsilon_{N}\right\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

- Finite temperature $(\beta<\infty)$: Chebyshev projection

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq \frac{2\|\varepsilon\|_{L^{\infty}\left(\mathcal{E}_{\chi}\right)}}{\chi-1} \chi^{-N} \leq C e^{-c \beta^{-1} N}
$$

where F is analytic on \mathcal{E}_{χ}.
[Proof: Chebyshev coefficients decay exponentially depending on region of analyticity]

Linear schemes: $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
Recall:

Idea \#1: Upper Bounds

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq\left\|\varepsilon-\varepsilon_{N}\right\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

- Finite temperature $(\beta<\infty)$: Chebyshev projection

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq \frac{2\|\varepsilon\|_{L^{\infty}\left(\mathcal{E}_{\chi}\right)}}{\chi-1} \chi^{-N} \leq C e^{-c \beta^{-1} N}
$$

where F is analytic on \mathcal{E}_{χ}.
[Proof: Chebyshev coefficients decay exponentially depending on region of analyticity]

- Insulators $(g>0): \exists \varepsilon_{N}$ s.t.

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq \frac{C}{\sqrt{N}} \sqrt{\frac{2-g}{2+g}}^{N}
$$

Linear schemes: $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
Recall:

Idea \#1: Upper Bounds

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq\left\|\varepsilon-\varepsilon_{N}\right\|_{L^{\infty}(\sigma(\mathcal{H}))}
$$

- Finite temperature $(\beta<\infty)$: Chebyshev projection

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq \frac{2\|\varepsilon\|_{L^{\infty}\left(\mathcal{E}_{\chi}\right)}}{\chi-1} \chi^{-N} \leq C e^{-c \beta^{-1} N}
$$

where F is analytic on \mathcal{E}_{χ}.
[Proof: Chebyshev coefficients decay exponentially depending on region of analyticity]

- Insulators $(g>0): \exists \varepsilon_{N}$ s.t.

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq \frac{C}{\sqrt{N}} \sqrt{\frac{2-g}{2+g}}^{N} \sim \frac{C}{\sqrt{N}} e^{-\frac{1}{4} g N}
$$

$$
\begin{gathered}
F=1 \\
\sigma(\mathcal{H}) \subseteq\left[-1,-\frac{g}{2}\right] \cup\left[\frac{g}{2}, 1\right]
\end{gathered}
$$

$$
F=0
$$

where g is the spectral gap.

Linear schemes: $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$

Idea \#2: Asymptotic bounds
Interpolation nodes: $X_{N}:=\left\{x_{j}\right\}_{j=0}^{N}$
Let $\varepsilon_{N}:=I_{X_{N}} \varepsilon$ polynomial interpolation of ε on X_{N}

$$
\left|E_{\ell}-E_{\ell}^{N}\right| \leq \sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
$$

Recall:

Linear schemes: $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$

Idea \#2: Asymptotic bounds
Interpolation nodes: $X_{N}:=\left\{x_{j}\right\}_{j=0}^{N}$
Let $\varepsilon_{N}:=I_{X_{N}} \varepsilon$ polynomial interpolation of ε on X_{N}
Given $A \subset \mathbb{R}$, there exists an equilibrium measure ω_{A} such that

$$
\frac{1}{N} \sum_{j=0}^{N} \delta\left(\cdot-x_{j}\right) \rightharpoonup \omega_{A} \quad \Longrightarrow \quad\left\|\varepsilon-\varepsilon_{N}\right\|_{L^{\infty}(A)} \lesssim e^{-\gamma_{N}^{\star} N}
$$

and $\gamma^{\star}=\lim _{N \rightarrow \infty} \gamma_{N}^{\star}$ is optimal.

Theorem (JT, Chen, Ortner (2022))

There exists a linear $\Theta_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
\left|E_{\ell}(\boldsymbol{r})-\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)\right| \leq C e^{-\gamma_{N} N}
$$

where $\lim _{N \rightarrow \infty} \gamma_{N}=\gamma>0$, and $\gamma \sim g_{\text {def }}+\beta^{-1}$.
However,

- Different Θ_{N} for different phases of the material
- Defects affect the convergence rate
[Here, $\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)$ is body-ordered]

Idea \#3: Nonlinear schemes

- Recall, local density of states D_{ℓ} is a (positive) measure supported on $\sigma(\mathcal{H})$ and satisfying

$$
\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

Idea \#3: Nonlinear schemes

- Recall, local density of states D_{ℓ} is a (positive) measure supported on $\sigma(\mathcal{H})$ and satisfying

$$
\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

- Idea: "Method of moments". Find D_{ℓ}^{N} such that

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}^{N}(x) \quad(n=0,1, \ldots, N) \quad \longrightarrow \quad E_{\ell}^{N}(\boldsymbol{r}):=\int \varepsilon \mathrm{d} D_{\ell}^{N}
$$

Idea \#3: Nonlinear schemes

- Recall, local density of states D_{ℓ} is a (positive) measure supported on $\sigma(\mathcal{H})$ and satisfying

$$
\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

- Idea: "Method of moments". Find D_{ℓ}^{N} such that

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}^{N}(x) \quad(n=0,1, \ldots, N) \quad \longrightarrow \quad E_{\ell}^{N}(\boldsymbol{r}):=\int \varepsilon \mathrm{d} D_{\ell}^{N}
$$

- Then

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right|=\quad\left|\int \varepsilon \quad \mathrm{d}\left(D_{\ell}-D_{\ell}^{N}\right)\right|
$$

Idea \#3: Nonlinear schemes

- Recall, local density of states D_{ℓ} is a (positive) measure supported on $\sigma(\mathcal{H})$ and satisfying

$$
\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

- Idea: "Method of moments". Find D_{ℓ}^{N} such that

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}^{N}(x) \quad(n=0,1, \ldots, N) \quad \longrightarrow \quad E_{\ell}^{N}(\boldsymbol{r}):=\int \varepsilon \mathrm{d} D_{\ell}^{N}
$$

- Then

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right|=\min _{\varepsilon_{N} \in \mathcal{P}_{N}}\left|\int\left(\varepsilon-\varepsilon_{N}\right) \mathrm{d}\left(D_{\ell}-D_{\ell}^{N}\right)\right|
$$

$\left[\mathcal{P}_{N}=\right.$ polynomials degree $\left.N\right]$

Idea \#3: Nonlinear schemes

- Recall, local density of states D_{ℓ} is a (positive) measure supported on $\sigma(\mathcal{H})$ and satisfying

$$
\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

- Idea: "Method of moments". Find D_{ℓ}^{N} such that

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}^{N}(x) \quad(n=0,1, \ldots, N) \quad \longrightarrow \quad E_{\ell}^{N}(\boldsymbol{r}):=\int \varepsilon \mathrm{d} D_{\ell}^{N}
$$

- Then

$$
\begin{aligned}
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| & =\min _{\varepsilon_{N} \in \mathcal{P}_{N}}\left|\int\left(\varepsilon-\varepsilon_{N}\right) \mathrm{d}\left(D_{\ell}-D_{\ell}^{N}\right)\right| \\
& \leq\left\|D_{\ell}-D_{\ell}^{N}\right\|_{\mathrm{TV}} \min _{\varepsilon_{N} \in \mathcal{P}_{N}}\left\|\varepsilon-\varepsilon_{N}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
\end{aligned}
$$

$\left[\mathcal{P}_{N}=\right.$ polynomials degree $\left.N\right]$
$E_{\ell}=\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)$

Linear schemes:

- Chebyshev projection
\longrightarrow Kernel polynomial method ${ }^{1}$
- Newton-Cotes quadrature (equispaced nodes)
- Clenshaw-Curtis quadrature (Chebyshev nodes)
- General quadrature (with $\nu_{N} \rightharpoonup^{\star} \omega_{\sigma(\mathcal{H})}$)

Nonlinear schemes:

- Maximum entropy method ${ }^{2}$ More
- Recursion method ${ }^{3}$: spectral measure corresponding to truncated tridiagonalisation of \mathcal{H} More \longrightarrow bond order potentials ${ }^{4}$
- Gauss quadrature More \longrightarrow linear-scaling spectral Gauss quadrature ${ }^{5}$

[^1]Theorem (JT, Chen, Ortner (2022))
There exists a linear $\Theta_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
\left|E_{\ell}(\boldsymbol{r})-\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)\right| \leq C e^{-\gamma_{N} N}
$$

where $\lim _{N \rightarrow \infty} \gamma_{N}=\gamma>0$, and $\gamma \sim g_{\text {def }}+\beta^{-1}$.

However,

- Different Θ_{N} for different phases of the material
- Eigenvalues in the gap affect the convergence rate

Theorem (JT, Chen, Ortner (2022))
There exists a linear $\Theta_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
\left|E_{\ell}(\boldsymbol{r})-\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)\right| \leq C e^{-\gamma_{N} N}
$$

where $\lim _{N \rightarrow \infty} \gamma_{N}=\gamma>0$, and $\gamma \sim g_{\text {def }}+\beta^{-1}$.
Theorem (JT, Chen, Ortner (2022))
Fix N odd. There exist $U \subset \mathbb{C}^{N}$ and an analytic function $\Theta_{N}: U \rightarrow \mathbb{C}$ such that

$$
\left|E_{\ell}(\boldsymbol{r})-\Theta_{N}\left(\mathcal{H}_{\ell \ell}, \ldots,\left[\mathcal{H}^{N}\right]_{\ell \ell}\right)\right| \leq C e^{-\eta_{N} N}
$$

where $\lim _{N \rightarrow \infty} \eta_{N}=\eta>0$, and $\eta \sim g+\beta^{-1}$.
Now,

- Θ_{N} is a "universal" nonlinearity
- Eigenvalues in the gap do not affect the convergence rates

However,

- Different Θ_{N} for different phases of the material
- Eigenvalues in the gap affect the convergence rate
$g=$ gap in the essential spectrum

Outline

(2) Locality
(3) Body-ordered approximation

- Linear schemes
- Nonlinear schemes
- Examples

4) Polynomial Approximation

- Logarithmic potential theory
- Schwarz-Christoffel mappings
(5) Conclusions

Polynomial Approximation

Asymptotically optimal rates:
General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$

Polynomial Approximation

Asymptotically optimal rates:
General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$

- $X=\left\{x_{j}\right\}_{j=0}^{N}$ - interpolation nodes

Polynomial Approximation

Asymptotically optimal rates:

General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$

- $X=\left\{x_{j}\right\}_{j=0}^{N}$ - interpolation nodes
- $I_{X} F \in \mathcal{P}_{N}$ with $I_{X} F\left(x_{j}\right)=F\left(x_{j}\right)$

Polynomial Approximation

Asymptotically optimal rates:

General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$

- $X=\left\{x_{j}\right\}_{j=0}^{N}$ - interpolation nodes
- $I_{X} F \in \mathcal{P}_{N}$ with $I_{X} F\left(x_{j}\right)=F\left(x_{j}\right)$

Polynomial Approximation

Asymptotically optimal rates:

General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$

- $X=\left\{x_{j}\right\}_{j=0}^{N}-$ interpolation nodes
- $I_{X} F \in \mathcal{P}_{N}$ with $I_{X} F\left(x_{j}\right)=F\left(x_{j}\right)$

Hermite Integral formula

Let \mathscr{C} contour encircling $X \cup\{x\}$,

$$
I_{X} F(x)-F(x)=\oint_{\mathscr{C}} \frac{\ell(x)}{\ell(z)} \frac{F(z)}{x-z} \frac{\mathrm{~d} z}{2 \pi i}
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$ is the node polynomial

Polynomial Approximation

Asymptotically optimal rates:

General $\sigma(\mathcal{H})$ with $\beta<\infty$ or $g>0$

- $X=\left\{x_{j}\right\}_{j=0}^{N}$ - interpolation nodes
- $I_{X} F \in \mathcal{P}_{N}$ with $I_{X} F\left(x_{j}\right)=F\left(x_{j}\right)$

Hermite Integral formula

Let \mathscr{C} contour encircling $X \cup\{x\}$,

$$
I_{X} F(x)-F(x)=\oint_{\mathscr{C}} \frac{\ell(x)}{\ell(z)} \frac{F(z)}{x-z} \frac{\mathrm{~d} z}{2 \pi i}
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$ is the node polynomial

> Proof:
> $\ell_{j}(x)=\prod_{k \neq j} \frac{x-x_{k}}{x_{j}-x_{k}}=\frac{\ell(x) /\left(x-x_{j}\right)}{\prod_{k \neq j}\left(x_{j}-x_{k}\right)}=\oint_{\mathscr{C}_{j}} \frac{\ell(x) /(x-z)}{\prod_{k \neq j}\left(z-x_{k}\right)} \frac{1}{z-x_{j}} \frac{\mathrm{~d} z}{2 \pi i}=\oint_{\mathscr{C}_{j}} \frac{\ell(x)}{\ell(z)} \frac{1}{x-z} \frac{\mathrm{~d} z}{2 \pi i}$

Polynomial Approximation

- Hermite Integral formula \Longrightarrow

$$
\left|I_{X} F(x)-F(x)\right| \leq \frac{\|F\|_{L^{\infty}(\mathscr{C})}}{2 \pi \operatorname{dist}(\sigma(\mathcal{H}), \mathscr{C})} \sup _{x \in \sigma(\mathcal{H}), z \in \mathscr{C}}\left|\frac{\ell(x)}{\ell(z)}\right|
$$

where $\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}\right)$ (node polynomial),

- Goal: Understand the asymptotic behaviour of

$$
\left|\frac{\ell(x)}{\ell(z)}\right| \quad \text { as } N \rightarrow \infty
$$

- How to choose X ?

Link to Logarithmic Potential Theory

- Define $\nu_{N}:=\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$ and note

$$
\log \left[|\ell(x)|^{\frac{1}{N}}\right]=\frac{1}{N} \sum_{j} \log \left|x-x_{j}\right|=\int \log |x-t| \mathrm{d} \nu_{N}(t)
$$

Link to Logarithmic Potential Theory

- Define $\nu_{N}:=\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$ and note

$$
\log \left[|\ell(x)|^{\frac{1}{N}}\right]=\frac{1}{N} \sum_{j} \log \left|x-x_{j}\right|=\int \log |x-t| \mathrm{d} \nu_{N}(t)
$$

- If $\nu_{N} \rightharpoonup^{\star} \nu$, then

$$
\lim _{N \rightarrow \infty}|\ell(x)|^{\frac{1}{N}}=e^{-U^{\nu}(x)} \quad \text { where } \quad U^{\nu}(x):=\int \log \frac{1}{|x-t|} \mathrm{d} \nu(t)
$$

Link to Logarithmic Potential Theory

- Define $\nu_{N}:=\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$ and note

$$
\log \left[|\ell(x)|^{\frac{1}{N}}\right]=\frac{1}{N} \sum_{j} \log \left|x-x_{j}\right|=\int \log |x-t| \mathrm{d} \nu_{N}(t)
$$

- If $\nu_{N} \rightharpoonup^{\star} \nu$, then

$$
\lim _{N \rightarrow \infty}|\ell(x)|^{\frac{1}{N}}=e^{-U^{\nu}(x)} \quad \text { where } \quad U^{\nu}(x):=\int \log \frac{1}{|x-t|} \mathrm{d} \nu(t)
$$

- body-order approx. \longleftrightarrow polynomial approx.
$\longleftrightarrow\left|\frac{\ell(x)}{\ell(z)}\right|$ for $x \in \sigma(\mathcal{H})$ and $z \in \mathscr{C}$
\longleftrightarrow behaviour of $U^{\nu}(x)-U^{\nu}(z)$

Link to Potential Theory

- $\Sigma \subset \mathbb{C}$ - compact approximation domain,

Link to Potential Theory

- $\Sigma \subset \mathbb{C}$ - compact approximation domain,
- Find $\mu \in \mathcal{M}(\Sigma)$
[unit Borel measure, supported on Σ] minimising the energy

$$
\mathrm{I}(\mu):=\int U^{\mu}(x) \mathrm{d} \mu(x)=\iint \log \frac{1}{|x-t|} \mathrm{d} \mu(t) \mathrm{d} \mu(x)
$$

Link to Potential Theory

- $\Sigma \subset \mathbb{C}$ - compact approximation domain,
- Find $\mu \in \mathcal{M}(\Sigma) \quad$ [unit Borel measure, supported on Σ] minimising the energy

$$
\mathrm{I}(\mu):=\int U^{\mu}(x) \mathrm{d} \mu(x)=\iint \log \frac{1}{|x-t|} \mathrm{d} \mu(t) \mathrm{d} \mu(x)
$$

- \exists ! minimiser ω_{Σ} - equilibrium measure with
$V_{\Sigma}:=\inf _{\mathcal{M}(\Sigma)} \mathrm{I} \in(-\infty, \infty]$ - Robin's constant ($\exists=\mathcal{M}(\Sigma)$ weak * compact and I Isc, ! = strict convexity)

Link to Potential Theory

- $\Sigma \subset \mathbb{C}$ - compact approximation domain,
- Find $\mu \in \mathcal{M}(\Sigma) \quad$ [unit Borel measure, supported on Σ] minimising the energy

$$
\mathrm{I}(\mu):=\int U^{\mu}(x) \mathrm{d} \mu(x)=\iint \log \frac{1}{|x-t|} \mathrm{d} \mu(t) \mathrm{d} \mu(x)
$$

- \exists ! minimiser ω_{Σ} - equilibrium measure with
$V_{\Sigma}:=\inf _{\mathcal{M}(\Sigma)} \mathrm{I} \in(-\infty, \infty]$ - Robin's constant ($\exists=\mathcal{M}(\Sigma)$ weak * compact and I Isc, ! = strict convexity)
- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

Link to Potential Theory

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

Link to Potential Theory

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[v_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

Link to Potential Theory

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[v_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

- Q: How to compute $g_{\Sigma}(z)=V_{\Sigma}-U^{\omega_{\Sigma}}(z) \geq 0$?

Link to Potential Theory

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[V_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

- Q: How to compute $g_{\Sigma}(z)=V_{\Sigma}-U^{\omega_{\Sigma}}(z) \geq 0$?
- (Q: How to choose X to obtain this rate of approximation?)

Link to Schwarz-Christoffel mappings

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[v_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

Link to Schwarz-Christoffel mappings

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[v_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

- The function $z \mapsto g_{\Sigma}(z)$ satisfies
- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}=0$ on Σ,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$

Link to Schwarz-Christoffel mappings

- Frostman:

$$
\begin{array}{ll}
U^{\omega_{\Sigma}}(z) \leq V_{\Sigma} & \text { for } z \in \mathbb{C} \\
U^{\omega_{\Sigma}}(z)=V_{\Sigma} & \text { for } z \in \Sigma
\end{array}
$$

- Choose interpolation points asymptotically distributed according to ω_{Σ} : for $x \in \Sigma$ and $z \in \mathscr{C}$,

$$
\lim _{N \rightarrow \infty}\left|\frac{\ell(x)}{\ell(z)}\right|^{\frac{1}{N}}=e^{-\left[v_{\Sigma}-U^{\omega} \Sigma(z)\right]}=: e^{-g_{\Sigma}(z)}
$$

- The function $z \mapsto g_{\Sigma}(z)$ satisfies
- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}=0$ on Σ,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$
- \exists ! solution to this Green's function problem
$\Sigma=[-1,1]$

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.

$\Sigma=[-1,1]$

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.

$\Sigma=[-1, a] \cup[b, 1]$

Green's function problem

Find g_{Σ} s.t.

- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}=0$ on Σ.

Define $g_{\Sigma}(z):=\operatorname{Re} G_{\Sigma}(z)$ where
$G_{[-1, a] \cup[b, 1]}$ \longrightarrow

$\Sigma=[-1, a] \cup[b, 1]$
Define $g_{\Sigma}(z):=\operatorname{Re} G_{\Sigma}(z)$ where

$$
G_{[-1, a] \cup[b, 1]}(z)=\int_{1}^{z} \frac{\zeta-z_{3}}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta
$$

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.

for some $z_{3} \in[a, b]$

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$
- Fejer sets

Consider $X:=G_{\Sigma}^{-1}\left(\left\{i \frac{\pi j}{N}\right\}_{j=0}^{N}\right)$

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$
- Fejer sets

Consider $X:=G_{\Sigma}^{-1}\left(\left\{i \frac{\pi j}{N}\right\}_{j=0}^{N}\right)$

- Leja sets

For $X=\left\{x_{j}\right\}_{j=0}^{N}$, choose $x_{N+1} \in \arg \max _{x \in \Sigma} \prod_{j=0}^{N}\left|x-x_{j}\right|$

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$
- Fejer sets

Consider $X:=G_{\Sigma}^{-1}\left(\left\{i \frac{\pi j}{N}\right\}_{j=0}^{N}\right)$

- Leja sets

For $X=\left\{x_{j}\right\}_{j=0}^{N}$, choose $x_{N+1} \in \arg \max _{x \in \Sigma} \prod_{j=0}^{N}\left|x-x_{j}\right|$

For $\Sigma=[-1,1]$:

- Chebyshev nodes are asymptotically distributed according to the arcsine measure:

$$
\mathrm{d} \omega_{[-1,1]}(x)=\frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x
$$

How to choose the interpolation nodes?

- Fekete Sets [difficult]
minimise I over the space of measures of the form $\frac{1}{N} \sum_{j=0}^{N} \delta_{x_{j}}$
- Fejer sets

Consider $X:=G_{\Sigma}^{-1}\left(\left\{i \frac{\pi j}{N}\right\}_{j=0}^{N}\right)$

- Leja sets

For $X=\left\{x_{j}\right\}_{j=0}^{N}$, choose $x_{N+1} \in \arg \max _{x \in \Sigma} \prod_{j=0}^{N}\left|x-x_{j}\right|$

For $\Sigma=[-1,1]$:

- Chebyshev nodes are asymptotically distributed according to the arcsine measure:

$$
\mathrm{d} \omega_{[-1,1]}(x)=\frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x
$$

Approximating $F^{\beta}(z)=\left(1+e^{\beta z}\right)^{-1}$ with polynomials

Approximating $F^{\beta}(z)=\left(1+e^{\beta z}\right)^{-1}$ with polynomials

Outline

(1) Introduction

(2) Locality
(3) Body-ordered approximation

- Linear schemes
- Nonlinear schemes
- Examples
(4) Polynomial Approximation
- Logarithmic potential theory
- Schwarz-Christoffel mappings
(5) Conclusions

Conclusions

- $E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r})$
- Local pieces \longrightarrow transferability
- QM/MM schemes: size of the QM region $\sim \eta$
[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]
- Thermodynamic limit problems
[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018],
[Ortner, JT. Math. Model. Methods Appl. Sci., 2020]

Conclusions

- $E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r})$
- Local pieces \longrightarrow transferability
- QM/MM schemes: size of the QM region $\sim \eta$
[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]
- Thermodynamic limit problems
[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018],
[Ortner, JT. Math. Model. Methods Appl. Sci., 2020]
- $E_{\ell}(\boldsymbol{r}) \approx \sum_{n=0}^{N} \sum_{\ell_{1}, \ldots, \ell_{n} \neq \ell} V_{n N}\left(\boldsymbol{r}_{\ell \ell_{1}}, \ldots, \boldsymbol{r}_{\ell \ell_{n}}\right)$,
- e.g. Linear Atomic Cluster Expansion (ACE)

Conclusions

- $E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r})$
- Local pieces \longrightarrow transferability
- QM/MM schemes: size of the QM region $\sim \eta$
[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]
- Thermodynamic limit problems
[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018],
[Ortner, JT. Math. Model. Methods Appl. Sci., 2020]
- $E_{\ell}(\boldsymbol{r}) \approx \sum_{n=0}^{N} \sum_{\ell_{1}, \ldots, \ell_{n} \neq \ell} V_{n N}\left(\boldsymbol{r}_{\ell \ell_{1}}, \ldots, \boldsymbol{r}_{\ell \ell_{n}}\right)$,
- e.g. Linear Atomic Cluster Expansion (ACE)
- There exists Θ_{N} "universal" with

$$
E_{\ell}(\boldsymbol{r}) \approx \Theta_{N}\left(\phi_{1}, \ldots, \phi_{N}\right)
$$

where ϕ_{n} are linear body-ordered.

- Nonlinear ACE

Conclusions

- $E(\boldsymbol{r})=\sum_{\ell} E_{\ell}(\boldsymbol{r})$
- Local pieces \longrightarrow transferability
- QM/MM schemes: size of the QM region $\sim \eta$
[e.g. Chen, Ortner. Multiscale Model. Simul., 2016]
- Thermodynamic limit problems
[Chen, Lu, Ortner. Arch. Rat. Mech. An., 2018],
[Ortner, JT. Math. Model. Methods Appl. Sci., 2020]
- $E_{\ell}(\boldsymbol{r}) \approx \sum_{n=0}^{N} \sum_{\ell_{1}, \ldots, \ell_{n} \neq \ell} V_{n N}\left(\boldsymbol{r}_{\ell \ell_{1}}, \ldots, \boldsymbol{r}_{\ell \ell_{n}}\right)$,
- e.g. Linear Atomic Cluster Expansion (ACE)
- There exists Θ_{N} "universal" with

$$
E_{\ell}(\boldsymbol{r}) \approx \Theta_{N}\left(\phi_{1}, \ldots, \phi_{N}\right)
$$

where ϕ_{n} are linear body-ordered.

- Nonlinear ACE
- Proofs: Polynomial approximation

Body-Ordered Approximations of Atomic Properties

- Classical vacuum cluster expansion [reasons for slow convergence]

Jack Thomas®, Huajie Chen \& Christoph Ortner

- Analysis of bond-order potentials (BOP), [Recursion method with possibly different terminators]
- (partial) Justification for linear-scaling spectral Gauss quadrature, [Approximation of $\rho=F(\mathcal{H}[\rho])$ with $\rho_{N}=F_{N}\left(\mathcal{H}\left[\rho_{N}\right]\right)$]
- Truncation operators and connection to divide-and-conquer methods

Body-Ordered Approximations of Atomic Properties

- Classical vacuum cluster expansion [reasons for slow convergence]

Jack Thomas®, Huajie Chen \& Christoph Ortner

- Analysis of bond-order potentials (BOP), [Recursion method with possibly different terminators]
- (partial) Justification for linear-scaling spectral Gauss quadrature, [Approximation of $\rho=F(\mathcal{H}[\rho])$ with $\rho_{N}=F_{N}\left(\mathcal{H}\left[\rho_{N}\right]\right)$]
- Truncation operators and connection to divide-and-conquer methods

Thank you for your attention!

What we couldn't prove (yet?):

- Forces converge in the linear schemes

$$
\left|\frac{\partial E_{\ell}}{\partial \boldsymbol{r}_{k}}-\frac{\partial E_{\ell}^{N}}{\partial \boldsymbol{r}_{k}}\right| \lesssim e^{-\gamma r_{\ell k}} e^{-\eta N}
$$

- But, this is a lot less obvious in the nonlinear schemes
- True if D_{ℓ} has "regular $n^{\text {th }}$ root asymptotic behaviour':

$$
\lim _{n \rightarrow \infty}\left|p_{n}\left(z ; D_{\ell}\right)\right|^{\frac{1}{n}}=e^{g_{\operatorname{supp} D_{\ell}}(z)}
$$

locally uniformly on $\mathbb{C} \backslash$ conv supp D_{ℓ}

- "Proof"

$$
\left|\frac{\partial E_{\ell}}{\partial \boldsymbol{r}_{k}}-\frac{\partial E_{\ell}^{N}}{\partial \boldsymbol{r}_{k}}\right| \lesssim\left[\sum_{n=0}^{\infty} \sum_{l=0}^{n}\left\|p_{l}\right\|_{L^{\infty}(\mathscr{C})}^{2} e^{-\eta_{1} n}\right] e^{-\eta_{2} N} e^{-\gamma r_{\ell k}}
$$

Outline

(1) Introduction
(2) Locality
(3) Body-ordered approximation

- Linear schemes
- Nonlinear schemes
- Examples

4) Polynomial Approximation

- Logarithmic potential theory
- Schwarz-Christoffel mappings
(5) Conclusions

Self-consistency

- Want $\rho_{\ell}^{\star}=F\left(\mathcal{H}\left[\rho^{\star}\right]\right)_{\ell \ell^{\prime}}$
- Approximate with $\rho_{N, \ell}=F_{N}\left(\mathcal{H}\left[\rho_{N}\right]\right)_{\ell \ell}$ [where F_{N} is a body-ordered approximation of F]
- If ρ^{\star} is stable [linearisation is invertible], then there exist ρ_{N} such that

$$
\left|\rho_{N, \ell}-\rho_{\ell}^{\star}\right| \lesssim e^{-\eta N}
$$

- Can solve $\rho_{N, \ell}=F_{N}\left(\mathcal{H}\left[\rho_{N}\right]\right)_{\ell \ell}$ with the Newton iteration:

$$
\rho^{i+1}=\rho^{i}-\left(I-D F_{N}\left(\rho^{i}\right)\right)^{-1}\left(\rho^{i}-F_{N}\left(\mathcal{H}\left[\rho^{i}\right]\right)\right)
$$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]

Proof

$$
\begin{aligned}
\left|E_{\ell}-E_{\ell}^{N}\right| & =\left|\left[\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right]_{\ell \ell}\right| \\
& \leq\left\|\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right\|_{\ell^{2} \rightarrow \ell^{2}} \\
& =\sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$ is a body-ordered approximation to E_{ℓ}

Proof

$$
\begin{aligned}
\left|E_{\ell}-E_{\ell}^{N}\right| & =\left|\left[\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right]_{\ell \ell}\right| \\
& \leq\left\|\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right\|_{\ell^{2} \rightarrow \ell^{2}} \\
& =\sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
is a body-ordered
approximation to E_{ℓ}

Claim:

$$
\begin{aligned}
& \left|E_{\ell}-E_{\ell}^{N}\right| \\
& \leq \sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

"convergence \leftrightarrow smoothness of ε "

Proof

$$
\begin{aligned}
\left|E_{\ell}-E_{\ell}^{N}\right| & =\left|\left[\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right]_{\ell \ell}\right| \\
& \leq\left\|\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right\|_{\ell^{2} \rightarrow \ell^{2}} \\
& =\sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

Body-ordered approximations

Main idea: Polynomials are body-ordered:

$$
\left[\mathcal{H}^{n}\right]_{\ell \ell}=\sum_{\ell_{1}, \ldots, \ell_{n-1}} \mathcal{H}_{\ell \ell_{1}} \mathcal{H}_{\ell_{1} \ell_{2}} \ldots \mathcal{H}_{\ell_{n-1} \ell}
$$

Recall

$$
E_{\ell}=\varepsilon(\mathcal{H})_{\ell \ell}=\int \varepsilon \mathrm{d} D_{\ell}
$$

["spatial correlations", "moments" $\left(\mathcal{H}^{n}\right)_{\ell \ell}=\int x^{n} \mathrm{~d} D_{\ell}(x)$]
Suppose $\varepsilon \approx \varepsilon_{N}$ where $\varepsilon_{N} \in \mathcal{P}_{N}$,
Then, $E_{\ell}^{N}:=\varepsilon_{N}(\mathcal{H})_{\ell \ell}$
is a body-ordered
approximation to E_{ℓ}

Claim:

$$
\begin{aligned}
& \left|E_{\ell}-E_{\ell}^{N}\right| \\
& \leq \sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

"convergence \leftrightarrow smoothness of ε "

Proof

$$
\begin{aligned}
\left|E_{\ell}-E_{\ell}^{N}\right| & =\left|\left[\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right]_{\ell \ell}\right| \\
& \leq\left\|\varepsilon(\mathcal{H})-\varepsilon_{N}(\mathcal{H})\right\|_{\ell^{2} \rightarrow \ell^{2}} \\
& =\sup _{z \in \sigma(\mathcal{H})}\left|\varepsilon(z)-\varepsilon_{N}(z)\right|
\end{aligned}
$$

Spectrum of the Hamiltonian

Spectrum of the Hamiltonian

$$
\begin{aligned}
&\left\{\ell:\left|\boldsymbol{r}_{\ell}^{\text {def }}\right| \leq R_{\text {def }}\right\} \quad \text { finite } \\
& \sup _{\ell:\left|\boldsymbol{r}_{\ell}\right|>R_{\text {def }}}\left|\boldsymbol{r}_{\ell}^{\text {def }}-\boldsymbol{r}_{\ell}\right| \leq \delta
\end{aligned}
$$

Spectrum of the Hamiltonian: Insulators

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta\left|\boldsymbol{r}_{\ell k}\right|}
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta\left|\boldsymbol{r}_{\ell k}\right|}
$$

$$
\eta \sim \mathrm{g}
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta\left|\boldsymbol{r}_{k}\right|}
$$

$$
\eta \sim \mathrm{g}
$$

Improved estimate:
$\eta \sim \mathrm{g} \gg \mathrm{g}^{\text {def }}$

(Kohn-Sham) Density Functional Theory

- Notation: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ,

(Kohn-Sham) Density Functional Theory

- Notation: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ,
- Schrödinger eq. \rightsquigarrow Kohn-Sham equations

$$
\mathcal{H}^{\mathrm{KS}} \psi_{n}:=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x)
$$

(Kohn-Sham) Density Functional Theory

- Notation: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ,
- Schrödinger eq. \rightsquigarrow Kohn-Sham equations

$$
\mathcal{H}^{\mathrm{KS}} \psi_{n}:=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2}
$$

（Kohn－Sham）Density Functional Theory

－Notation：$\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ ，
－Schrödinger eq．\rightsquigarrow Kohn－Sham equations

$$
\mathcal{H}^{\mathrm{KS}} \psi_{n}:=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2}
$$

$$
F=
$$

（Kohn－Sham）Density Functional Theory

－Notation：$\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ ，
－Schrödinger eq．\rightsquigarrow Kohn－Sham equations

$$
\begin{aligned}
\mathcal{H}^{\mathrm{KS}} \psi_{n} & :=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2} \\
V_{\mathrm{eff}}(x ; \rho) & :=\int \frac{\rho(y)}{|x-y|} \mathrm{d} y-\sum_{m} \frac{Z_{m}}{\left|x-\boldsymbol{r}_{m}\right|}+V_{\mathrm{xc}}(x ; \rho),
\end{aligned}
$$

$$
F=
$$

（Kohn－Sham）Density Functional Theory

－Notation：$\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ ，
－Schrödinger eq．\rightsquigarrow Kohn－Sham equations

$$
\begin{aligned}
\mathcal{H}^{\mathrm{KS}} \psi_{n} & :=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2} \\
V_{\mathrm{eff}}(x ; \rho) & :=\int \frac{\rho(y)}{|x-y|} \mathrm{d} y-\sum_{m} \frac{Z_{m}}{\left|x-\boldsymbol{r}_{m}\right|}+V_{\mathrm{xc}}(x ; \rho),
\end{aligned}
$$

－Energy

$$
E^{K S}[\rho]=\sum_{n} F\left(\lambda_{n}\right) \lambda_{n}+\ldots
$$

$$
F=
$$

(Kohn-Sham) Density Functional Theory

- Notation: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ position and species of atom ℓ,
- Schrödinger eq. \rightsquigarrow Kohn-Sham equations

$$
\begin{aligned}
\mathcal{H}^{\mathrm{KS}} \psi_{n} & :=\left(-\frac{1}{2} \Delta+V_{\mathrm{eff}}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2} \\
V_{\mathrm{eff}}(x ; \rho) & :=\int \frac{\rho(y)}{|x-y|} \mathrm{d} y-\sum_{m} \frac{Z_{m}}{\left|x-\boldsymbol{r}_{m}\right|}+V_{\mathrm{xc}}(x ; \rho),
\end{aligned}
$$

- Energy

$$
E^{K S}[\rho]=\sum_{n} F\left(\lambda_{n}\right) \lambda_{n}+\ldots
$$

$$
F=
$$

$$
F^{\beta}=
$$

DFT

Back

- Schrödinger eq. \rightsquigarrow Kohn-Sham equations

$$
\begin{aligned}
\mathcal{H}^{\mathrm{KS}} \psi_{n} & :=\left(-\frac{1}{2} \Delta+V_{\text {eff }}(x ; \rho)\right) \psi_{n}(x)=\lambda_{n} \psi_{n}(x), \quad \rho(x)=\sum_{n} F\left(\lambda_{n}\right)\left|\psi_{n}(x)\right|^{2} \\
V_{\text {eff }}(x ; \rho) & :=\int \frac{\rho(y)}{|x-y|} \mathrm{d} y-\sum_{m} \frac{Z_{m}}{\left|x-\boldsymbol{r}_{m}\right|}+V_{\mathrm{xc}}(x ; \rho),
\end{aligned}
$$

- Energy

$$
\begin{aligned}
E^{K S}[\rho]= & \sum_{n} \lambda_{n} F\left(\lambda_{n}\right)-\int \rho(x) V_{\text {eff }}(x ; \rho) \\
& +E_{\mathrm{xc}}[\rho]+\frac{1}{2} \iint \frac{\rho(x) \rho(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y-\sum_{m} Z_{m} \int \frac{\rho(x)}{\left|x-\boldsymbol{r}_{m}\right|} \mathrm{d} x+E_{Z Z}
\end{aligned}
$$

Spectrum of the Hamiltonian

Spectrum of the Hamiltonian

$$
\begin{aligned}
&\left\{\ell:\left|\boldsymbol{r}_{\ell}^{\text {def }}\right| \leq R_{\text {def }}\right\} \quad \text { finite } \\
& \sup _{\ell:\left|\boldsymbol{r}_{\ell}\right|>R_{\text {def }}}\left|\boldsymbol{r}_{\ell}^{\text {def }}-\boldsymbol{r}_{\ell}\right| \leq \delta
\end{aligned}
$$

Spectrum of the Hamiltonian: Insulators

$\sigma\left(\mathcal{H}\left(\boldsymbol{r}^{\mathrm{def}}\right)\right)=$
|

Spectrum of the Hamiltonian: Insulators

Locality:

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta\left|\boldsymbol{r}_{k}\right|}
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta\left|\boldsymbol{r}_{\ell k}\right|}
$$

$$
\left|\frac{\partial E_{\ell}(\boldsymbol{r})}{\partial \boldsymbol{r}_{k}}\right| \leq C e^{-\eta\left|\boldsymbol{r}_{\ell k}\right|}
$$

(2,1,0)	

$(2,1,1)$

$(4,0,0)$

00
$(4,2,2)$

$(3,0,0)$

$(3,1,0)$

Hydrogen Wave Function
$\psi_{n l m}(r, \vartheta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!}} e^{-\rho / 2} \rho^{l} L_{n-l-1}^{2 l+1}(\rho) \cdot Y_{l m}(\vartheta, \varphi)$

$(4,3,2)$

Green's Functions for Multiply Connected Domains via Conformal Mapping*

Mark Embree Lloyd N. Trefethen

Fig. 8 Illustration of the overconvergence phenomenon of Theorem 2(b) and Theorem 4. On the same two-polygon region as in Figure 3, a polynomial $p(z)$ is sought that approximates the values -1 on the hexagon and +1 on the square. For this figure, p is taken as the degree- 29 near-best approximation defined by interpolation in 30 pre-images of roots of unity in the unit circle under the conformal map $z=\Phi^{-1}(w)$ (eqs. (8) and (9)); a similar plot for the exactly optimal polynomial would not look much different. The figure shows $\operatorname{Re} p(z)$ by a blue-red color scale together with the polygons, the interpolation points, and the figure-8shaped critical level curve of the Green's function. Not just on the polygons themselves, but throughout the two lobes of the figure $-8, \operatorname{Re} p(z)$ comes close to the constant values -1 and +1 . Outside, it grows very fast.

Vacuum cluster expansion

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}
$$

Vacuum cluster expansion

$E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}$
$V_{0}=E(\emptyset)$

Vacuum cluster expansion

$E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}$

$$
\begin{aligned}
V_{0} & =E(\emptyset) \\
V_{1}\left(\boldsymbol{r}_{1}\right) & =E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset)
\end{aligned}
$$

Vacuum cluster expansion

$E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}$

$$
\begin{aligned}
V_{0} & =E(\emptyset) \\
V_{1}\left(\boldsymbol{r}_{1}\right) & =E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) & =E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset)
\end{aligned}
$$

Vacuum cluster expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& V_{0}=E(\emptyset) \\
& V_{1}\left(\boldsymbol{r}_{1}\right)=E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
& V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset) \\
& \vdots \\
& V_{N}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=\sum_{K \subseteq\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right\}}(-1)^{N-|K|} E(K)
\end{aligned}
$$

Vacuum cluster expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& V_{0}=E(\emptyset) \\
& V_{1}\left(\boldsymbol{r}_{1}\right)=E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
& V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset)
\end{aligned}
$$

$$
V_{N}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=\sum_{K \subseteq\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right\}}(-1)^{N-|K|} E(K)
$$

Then,

$$
E\left(\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\}\right) \approx \sum_{n=0}^{N} \sum_{j_{1}<\cdots<j_{n}} V_{n}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{n}}\right)
$$

Exact for $N=J$.

Vacuum cluster expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& V_{0}=E(\emptyset) \\
& V_{1}\left(\boldsymbol{r}_{1}\right)=E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
& V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset)
\end{aligned}
$$

$$
\vdots
$$

$$
V_{N}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=\sum_{K \subseteq\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right\}}(-1)^{N-|K|} E(K)
$$

Then,

$$
E\left(\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\}\right) \approx \sum_{n=0}^{N} \sum_{j_{1}<\cdots<j_{n}} V_{n}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{n}}\right)
$$

"An intuitive explanation for this slow convergence is that we are building an interaction law for a condensed or possibly even crystalline phase material from clusters in vacuum where the bonding chemistry is significantly different."

Exact for $N=J$.

Vacuum cluster expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& V_{0}=E(\emptyset) \\
& V_{1}\left(\boldsymbol{r}_{1}\right)=E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E(\emptyset) \\
& V_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E\left(\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\}\right)-E\left(\left\{\boldsymbol{r}_{1}\right\}\right)-E\left(\left\{\boldsymbol{r}_{2}\right\}\right)+E(\emptyset)
\end{aligned}
$$

$$
V_{N}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right)=\sum_{K \subseteq\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right\}}(-1)^{N-|K|} E(K)
$$

Then,

$$
E\left(\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\}\right) \approx \sum_{n=0}^{N} \sum_{j_{1}<\cdots<j_{n}} V_{n}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{n}}\right)
$$

"An intuitive explanation for this slow convergence is that we are building an interaction law for a condensed or possibly even crystalline phase material from clusters in vacuum where the bonding chemistry is significantly different."
Exact for $N=J$.

Numerical experiments: "defect-free"

- Approximation domain $E_{1}=[-1,-0.2] \cup[0.2,1]$

Numerical experiments: with defect

- Approximation domain $E_{2}=E_{1} \cup[-0.06,-0.03]$

Maximum entropy method

- Fix $[a, b] \supset \sigma(\mathcal{H})$, maximise

$$
S(P):=-\int_{a}^{b}[P(x) \log P(x)-P(x)] \mathrm{d} x+\sum_{n=0}^{N} \lambda_{n}\left(\int_{a}^{b} x^{n} P(x) \mathrm{d} x-\left[\mathcal{H}^{n}\right]_{\ell \ell}\right)
$$

- Leads to

$$
P_{N}(x)=e^{-\sum_{n=0}^{N} \lambda_{n} x^{n}} \quad \text { s.t. first } N \text { moments }
$$

- Moreover, if $\left\{\left(\mathcal{H}^{n}\right)_{\ell \ell}\right\}$ is completely monotone, then $\exists!P$.

Nonlinear schemes: Recursion method

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ} :

$$
b_{n+1} p_{n+1}(x)=\left(x-a_{n}\right) p_{n}(x)-b_{n} p_{n-1}(x) \quad[\text { Lanczos recursion }]
$$

define

$$
T_{N}:=\left(\begin{array}{cccc}
a_{0} & b_{1} & & \\
b_{1} & a_{1} & \ddots & \\
& \ddots & \ddots & b_{N} \\
& & b_{N} & a_{N}
\end{array}\right)=\left(\int p_{i}(x) \times p_{j}(x) \mathrm{d} D_{\ell}(x)\right)_{0 \leq i, j \leq N},
$$

Nonlinear schemes: Recursion method

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ} :

$$
b_{n+1} p_{n+1}(x)=\left(x-a_{n}\right) p_{n}(x)-b_{n} p_{n-1}(x) \quad[\text { Lanczos recursion }]
$$

define

$$
T_{N}:=\left(\begin{array}{cccc}
a_{0} & b_{1} & & \\
b_{1} & a_{1} & \ddots & \\
& \ddots & \ddots & b_{N} \\
& & b_{N} & a_{N}
\end{array}\right)=\left(\int p_{i}(x) \times p_{j}(x) \mathrm{d} D_{\ell}(x)\right)_{0 \leq i, j \leq N},
$$

- $\left[\mathcal{H}^{n}\right]_{\ell \ell}=\left[\left(T_{N}\right)^{n}\right]_{00}$ for all $n \leq 2 N+1$,

Nonlinear schemes: Recursion method

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ} :

$$
b_{n+1} p_{n+1}(x)=\left(x-a_{n}\right) p_{n}(x)-b_{n} p_{n-1}(x) \quad[\text { Lanczos recursion }]
$$

define

$$
T_{N}:=\left(\begin{array}{cccc}
a_{0} & b_{1} & & \\
b_{1} & a_{1} & \ddots & \\
& \ddots & \ddots & b_{N} \\
& & b_{N} & a_{N}
\end{array}\right)=\left(\int p_{i}(x) \times p_{j}(x) \mathrm{d} D_{\ell}(x)\right)_{0 \leq i, j \leq N},
$$

- $\left[\mathcal{H}^{n}\right]_{\ell \ell}=\left[\left(T_{N}\right)^{n}\right]_{00}$ for all $n \leq 2 N+1$,
- D_{ℓ}^{N} - spectral measure of T_{N} s.t. $E_{\ell}^{N}:=\varepsilon\left(T_{N}\right)_{00}$

Nonlinear schemes: Recursion method

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ} :

$$
b_{n+1} p_{n+1}(x)=\left(x-a_{n}\right) p_{n}(x)-b_{n} p_{n-1}(x) \quad[\text { Lanczos recursion }]
$$

define

$$
T_{N}:=\left(\begin{array}{cccc}
a_{0} & b_{1} & & \\
b_{1} & a_{1} & \ddots & \\
& \ddots & \ddots & b_{N} \\
& & b_{N} & a_{N}
\end{array}\right)=\left(\int p_{i}(x) x p_{j}(x) \mathrm{d} D_{\ell}(x)\right)_{0 \leq i, j \leq N},
$$

- $\left[\mathcal{H}^{n}\right]_{\ell \ell}=\left[\left(T_{N}\right)^{n}\right]_{00}$ for all $n \leq 2 N+1$,
- D_{ℓ}^{N} - spectral measure of T_{N} s.t. $E_{\ell}^{N}:=\varepsilon\left(T_{N}\right)_{00}$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

If $\operatorname{supp}\left(D_{\ell}\right) \cap[a, b]=\emptyset$, then $\left|\operatorname{supp}\left(D_{\ell}^{N}\right) \cap[a, b]\right| \leq 1$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

If $\operatorname{supp}\left(D_{\ell}\right) \cap[a, b]=\emptyset$, then $\left|\operatorname{supp}\left(D_{\ell}^{N}\right) \cap[a, b]\right| \leq 1$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,
- Can show $\omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} \geq 0$ and $\sum_{j} \omega_{j}=1 \Longrightarrow$

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,
- Can show $\omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} \geq 0$ and $\sum_{j} \omega_{j}=1 \Longrightarrow$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

Nonlinear schemes: Gauss quadrature

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,
- Can show $\omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} \geq 0$ and $\sum_{j} \omega_{j}=1 \Longrightarrow$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

- Let $\left\{p_{n}\right\}$ orthogonal polynomials with respect to D_{ℓ},
- Interpolate in $X:=\left\{\right.$ zeros of $\left.p_{N+1}\right\}$,
- $E_{\ell}^{N}:=\sum_{j=0}^{N} \ell_{j}(\mathcal{H})_{\ell \ell} \varepsilon\left(x_{j}\right)$,
- Can show $\omega_{j}:=\ell_{j}(\mathcal{H})_{\ell \ell} \geq 0$ and $\sum_{j} \omega_{j}=1 \Longrightarrow$

$$
\left|E_{\ell}(\boldsymbol{r})-E_{\ell}^{N}(\boldsymbol{r})\right| \leq 2 \inf _{\varepsilon_{2 N+1} \in \mathcal{P}_{2 N+1}}\left\|\varepsilon-\varepsilon_{2 N+1}\right\|_{L^{\infty}\left(\sigma(\mathcal{H}) \cup \operatorname{supp}\left(D_{\ell}^{N}\right)\right)}
$$

- Can show that $E_{\ell}^{N}=\Theta\left(\mathcal{H}_{\ell \ell}, \ldots,\left(\mathcal{H}^{2 N+1}\right)_{\ell \ell}\right)$ where
$\Theta: \mathbb{C}^{2 N+1} \rightarrow \mathbb{C}$ is analytic in open neighbourhoods of "admissible moment sequences"

Numerical Experiments

[Ortner, JT, Chen. ESAIM: M2AN, 2020]

Numerical Experiments

[Ortner, JT, Chen. ESAIM: M2AN, 2020]
(a) Decay of site energy derivatives.

Atomic Cluster Expansion (ACE)

Atomic Cluster Expansion (ACE)

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}
$$

- Permutations

Atomic Cluster Expansion (ACE)

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}
$$

$$
12
$$

- Permutations
- ${ }^{\wedge} \quad \bullet Q \in O(3)$

Atomic Cluster Expansion (ACE)

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \begin{gathered}
\text { "In general, one aims to represent a complex fully } \\
\text { many-body PES E (exactly or approximately) as a } \\
\text { combination of 'simple' components, e.g., } \\
\text { low-dimensional or low-rank" } \\
\text { - Bachmayr et al. J. Comp. Phys. 454 (2022) }
\end{gathered}
$$

Atomic Cluster Expansion (ACE)

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
\end{aligned}
$$

"In general, one aims to represent a complex fully many-body PES E (exactly or approximately) as a combination of 'simple' components, e.g.,
low-dimensional or low-rank"
— Bachmayr et al. J. Comp. Phys. 454 (2022)

- Permutations
- $Q \in O(3)$

Atomic Cluster Expansion (ACE)

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{k}\right\}_{k \neq \ell}\right)
\end{aligned}
$$

"In general, one aims to represent a complex fully many-body PES E (exactly or approximately) as a combination of 'simple' components, e.g.,
low-dimensional or low-rank"

- Bachmayr et al. J. Comp. Phys. 454 (2022)

- Permutations
- $Q \in O$ (3)
- cut-off radius

Atomic Cluster Expansion (ACE)

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}
$$

$$
E=\sum E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right) \quad \text { - Bachmayr et al. J. Comp. Phys. } 454 \text { (2022) }
$$

Tight Binding

- Recall: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ (position, species) of atom ℓ. Kohn-Sham eqs: $\mathcal{H}^{\mathrm{KS}} \psi_{n}=\lambda_{n} \psi_{n}$,

Tight Binding

- Recall: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ (position, species) of atom ℓ. Kohn-Sham eqs: $\mathcal{H}^{\mathrm{KS}} \psi_{n}=\lambda_{n} \psi_{n}$,
- Project to a "basis" of local orbitals $\left\{\phi_{\ell a}\right\}$
i.e. $\psi_{n}(x)=\sum_{\ell a} C_{n, \ell_{a}} \phi_{\ell a}(x)$

Tight Binding

- Recall: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ (position, species) of atom ℓ. Kohn-Sham eqs: $\mathcal{H}^{\mathrm{KS}} \psi_{n}=\lambda_{n} \psi_{n}$,
- Project to a "basis" of local orbitals $\left\{\phi_{\ell a}\right\}$
i.e. $\psi_{n}(x)=\sum_{\ell a} C_{n, \ell a} \phi_{\ell a}(x)$

$$
\begin{array}{r}
\mathcal{H} C_{n}=\lambda_{n} C_{n} \quad \text { where } \mathcal{H}_{\ell a, k b}:=\int \phi_{\ell a} \mathcal{H}^{\mathrm{KS}} \phi_{k b} \\
\text { [assuming overlap matrix is the identity] }
\end{array}
$$

Tight Binding

- Recall: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ (position, species) of atom ℓ. Kohn-Sham eqs: $\mathcal{H}^{\mathrm{KS}} \psi_{n}=\lambda_{n} \psi_{n}$,
- Project to a "basis" of local orbitals $\left\{\phi_{\ell a}\right\}$
i.e. $\psi_{n}(x)=\sum_{\ell a} C_{n, \ell a} \phi_{\ell a}(x)$

$$
\begin{array}{r}
\mathcal{H} C_{n}=\lambda_{n} C_{n} \quad \text { where } \quad \mathcal{H}_{\ell,, k b}:=\int \phi_{\ell \mathrm{a}} \mathcal{H}^{\mathrm{KS}} \phi_{k b} \\
\text { [assuming overlap matrix is the identity] }
\end{array}
$$

- Tight binding assumption: $\left|\mathcal{H}_{\ell k}\right| \leq h_{0} e^{-\gamma_{0} r_{\ell k}}$

Tight Binding

- Recall: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ (position, species) of atom ℓ. Kohn-Sham eqs: $\mathcal{H}^{\mathrm{KS}} \psi_{n}=\lambda_{n} \psi_{n}$,
- Project to a "basis" of local orbitals $\left\{\phi_{\ell a}\right\}$
i.e. $\psi_{n}(x)=\sum_{\ell a} C_{n, \ell a} \phi_{\ell a}(x)$

$$
\mathcal{H} C_{n}=\lambda_{n} C_{n} \quad \text { where } \quad \mathcal{H}_{\ell a, k b}:=\int \phi_{\ell a} \mathcal{H}^{\mathrm{KS}} \phi_{k b}
$$

[assuming overlap matrix is the identity]

- Tight binding assumption: $\left|\mathcal{H}_{\ell k}\right| \leq h_{0} e^{-\gamma_{0} r_{\ell k}}$
- Band energy:

$$
E(\boldsymbol{r})=\sum_{n} \lambda_{n} F\left(\lambda_{n}\right)
$$

[More generally, $\left.O(\boldsymbol{r}):=\sum_{n} o\left(\lambda_{n}\right)\right]$

Tight Binding

- Recall: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ (position, species) of atom ℓ. Kohn-Sham eqs: $\mathcal{H}^{\mathrm{KS}} \psi_{n}=\lambda_{n} \psi_{n}$,
- Project to a "basis" of local orbitals $\left\{\phi_{\ell a}\right\}$
i.e. $\psi_{n}(x)=\sum_{\ell a} C_{n, \ell a} \phi_{\ell a}(x)$

$$
\begin{array}{r}
\mathcal{H} C_{n}=\lambda_{n} C_{n} \quad \text { where } \mathcal{H}_{\ell a, k b}:=\int \phi_{\ell a} \mathcal{H}^{\mathrm{KS}} \phi_{k b} \\
\text { [assuming overlap matrix is the identity] }
\end{array}
$$

- Tight binding assumption: $\left|\mathcal{H}_{\ell k}\right| \leq h_{0} e^{-\gamma_{0} r_{\ell k}}$
- Band energy:

$$
E(\boldsymbol{r})=\sum_{n} \lambda_{n} F\left(\lambda_{n}\right) \quad F=
$$

[More generally, $O(\boldsymbol{r}):=\sum_{n} o\left(\lambda_{n}\right)$]

Tight Binding

- Recall: $\left(\boldsymbol{r}_{\ell}, Z_{\ell}\right)$ (position, species) of atom ℓ. Kohn-Sham eqs: $\mathcal{H}^{\mathrm{KS}} \psi_{n}=\lambda_{n} \psi_{n}$,
- Project to a "basis" of local orbitals $\left\{\phi_{\ell a}\right\}$
i.e. $\psi_{n}(x)=\sum_{\ell a} C_{n, \ell a} \phi_{\ell a}(x)$

$$
\begin{array}{r}
\mathcal{H} C_{n}=\lambda_{n} C_{n} \quad \text { where } \mathcal{H}_{\ell a, k b}:=\int \phi_{\ell a} \mathcal{H}^{\mathrm{KS}} \phi_{k b} \\
\text { [assuming overlap matrix is the identity] }
\end{array}
$$

- Tight binding assumption: $\left|\mathcal{H}_{\ell k}\right| \leq h_{0} e^{-\gamma_{0} r_{\ell k}}$
- Band energy:

$$
E(\boldsymbol{r})=\sum_{n} \lambda_{n} F\left(\lambda_{n}\right) \quad F^{\beta}=
$$

[More generally, $O(\boldsymbol{r}):=\sum_{n} o\left(\lambda_{n}\right)$]

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{j}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\text {ek }}<r_{\text {rut }}}\right)
\end{aligned}
$$

$E_{1}=$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {rut }}}\right)
\end{aligned}
$$

$$
\begin{array}{r}
V_{0} \\
\boldsymbol{r}_{1} \bullet
\end{array}
$$

$E_{1}=$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {rut }}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{1}=\quad V_{0}+
\end{aligned}
$$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {rut }}}\right)
\end{aligned}
$$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {rut }}}\right)
\end{aligned}
$$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\text {cut }}}\right)
\end{aligned}
$$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\} r_{\ell k}<r_{\mathrm{cut}}\right)
\end{aligned}
$$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\boldsymbol{l}}\right\}_{r_{\ell k}<r_{\text {rut }}}\right)
\end{aligned}
$$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\} r_{\ell k}<r_{\mathrm{cut}}\right)
\end{aligned}
$$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\} r_{\ell k}<r_{\mathrm{cut}}\right)
\end{aligned}
$$

Atomic Cluster Expansion

$$
\begin{aligned}
& E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \\
& E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{r_{\ell k}<r_{\mathrm{cut}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{N=0}^{\mathcal{N}} \sum_{j_{1}, \ldots, j_{N}} V_{N}\left(\boldsymbol{r}_{1 j_{1}}, \ldots, \boldsymbol{r}_{1 j_{N}}\right)
\end{aligned}
$$

Atomic Cluster Expansion

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{\boldsymbol{J}}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}
$$

Atomic Cluster Expansion

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R}
$$

- High dimensional,
- Many-body

Atomic Cluster Expansion

$$
\begin{gathered}
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \quad \begin{array}{l}
\text { • High dimensional, } \\
\text { ○ Many-body }
\end{array} \\
E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
\end{gathered}
$$

Atomic Cluster Expansion

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \quad \begin{aligned}
& \text { - High dimensional, } \\
& \text { • Many-body }
\end{aligned}
$$

$$
E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

- V_{N} defined on Euclidean space (fixed dimension)

$$
E_{\ell}=\sum_{N=0}^{\mathcal{N}} \sum_{j_{1}<\cdots<j_{N}} V_{N}\left(\boldsymbol{r}_{\ell_{1}}, \ldots, \boldsymbol{r}_{\ell_{j_{N}}}\right)
$$

Atomic Cluster Expansion

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \quad \begin{aligned}
& \text { • High dimensional, } \\
& \text { • Many-body }
\end{aligned}
$$

$$
E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

- V_{N} defined on Euclidean space (fixed dimension)

$$
E_{\ell}=\sum_{N=0}^{\mathcal{N}} \sum_{j_{1}<\cdots<j_{N}} V_{N}\left(\boldsymbol{r}_{\ell_{1}}, \ldots, \boldsymbol{r}_{\ell_{j_{N}}}\right)
$$

Approximate $\boldsymbol{R}=\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right) \mapsto V_{N}(\boldsymbol{R})$ where

- $V_{N}(\boldsymbol{R})=0$ if $\max \left|\boldsymbol{r}_{j}\right| \geq r_{\text {cut }}$,
- $V_{N}(Q \boldsymbol{R})=V_{N}(\boldsymbol{R})$ where $Q \boldsymbol{R}=\left(Q \boldsymbol{r}_{j}\right)_{j=1}^{N}, Q \in O(3)$,
- $V_{N}(\sigma \boldsymbol{R})=V_{N}(\boldsymbol{R})$ where $\sigma \boldsymbol{R}=\left(\boldsymbol{r}_{\sigma(j)}\right)_{j=1}^{N}, \sigma \in S_{N}$

Atomic Cluster Expansion

$$
E: \bigcup_{J=0}^{\infty}\left\{\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{J}\right\} \subset \mathbb{R}^{3}\right\} \rightarrow \mathbb{R} \quad \begin{aligned}
& \text { • High dimensional, } \\
& \text { • Many-body }
\end{aligned}
$$

$$
E=\sum_{\ell} E_{\ell}\left(\left\{\boldsymbol{r}_{\ell k}\right\}_{k \neq \ell}\right)
$$

- V_{N} defined on Euclidean space (fixed dimension)

$$
E_{\ell}=\sum_{N=0}^{\mathcal{N}} \sum_{j_{1}<\cdots<j_{N}} V_{N}\left(\boldsymbol{r}_{\ell_{1}}, \ldots, \boldsymbol{r}_{\ell_{j_{N}}}\right)
$$

Approximate $\boldsymbol{R}=\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right) \mapsto V_{N}(\boldsymbol{R})$ where

- $V_{N}(\boldsymbol{R})=0$ if $\max \left|\boldsymbol{r}_{j}\right| \geq r_{\text {cut }}$,
- $V_{N}(Q \boldsymbol{R})=V_{N}(\boldsymbol{R})$ where $Q \boldsymbol{R}=\left(Q \boldsymbol{r}_{j}\right)_{j=1}^{N}, Q \in O(3)$,
- $V_{N}(\sigma \boldsymbol{R})=V_{N}(\boldsymbol{R})$ where $\sigma \boldsymbol{R}=\left(\boldsymbol{r}_{\sigma(j)}\right)_{j=1}^{N}, \sigma \in S_{N}$

Computationally efficient? For $J \gg \mathcal{N}$, naively scales like $\binom{J}{\mathcal{N}} \sim \frac{J^{\mathcal{N}}}{\mathcal{N}!}$

ACE: Approximate $V_{N}(\boldsymbol{R})$ where $\boldsymbol{R}=\left(\boldsymbol{r}_{1}, \ldots, r_{N}\right) \in \mathbb{R}^{3 N}$

- 1-body basis: $\phi_{n / m}(\boldsymbol{r})=P_{n}(r) Y_{l}^{m}(\hat{\boldsymbol{r}})$,
- N-body basis: $\phi_{\boldsymbol{n} \boldsymbol{m}}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right):=\prod_{j=1}^{N} \phi_{n_{j} l_{j} m_{j}}\left(\boldsymbol{r}_{j}\right)$

ACE: Approximate $V_{N}(\boldsymbol{R})$ where $\boldsymbol{R}=\left(\boldsymbol{r}_{1}, \ldots, r_{N}\right) \in \mathbb{R}^{3 N}$

- 1-body basis: $\phi_{n / m}(\boldsymbol{r})=P_{n}(r) Y_{l}^{m}(\hat{\boldsymbol{r}})$,
- N-body basis: $\phi_{\boldsymbol{n} \mid \boldsymbol{m}}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right):=\prod_{j=1}^{N} \phi_{n_{j} / j m_{j}}\left(\boldsymbol{r}_{j}\right)$
- $V_{N} \in \operatorname{span}\left\{\phi_{\boldsymbol{n} \boldsymbol{m}}: \boldsymbol{n}, \boldsymbol{I} \in \mathbb{N}^{N}, \boldsymbol{m} \in \mathbb{Z}^{N}\right.$ s.t. $\left.-l_{j} \leq m_{j} \leq I_{j}\right\}$
- Restrict V_{N} to $\left\{\boldsymbol{r} \in \mathbb{R}^{3}:|\boldsymbol{r}|>r_{0}\right\}^{N}$
- $\left\{P_{n}(r)\right\}_{n}$ - linearly independent

ACE: Approximate $V_{N}(\boldsymbol{R})$ where $\boldsymbol{R}=\left(r_{1}, \ldots, r_{N}\right) \in \mathbb{R}^{3 N}$

- 1-body basis: $\phi_{n / m}(\boldsymbol{r})=P_{n}(r) Y_{l}^{m}(\hat{\boldsymbol{r}})$,
- N-body basis: $\phi_{\boldsymbol{n} \boldsymbol{m}}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right):=\prod_{j=1}^{N} \phi_{n_{j} l_{j} m_{j}}\left(\boldsymbol{r}_{j}\right)$
- $V_{N} \in \operatorname{span}\left\{\phi_{\boldsymbol{n} \boldsymbol{m} \boldsymbol{m}}: \boldsymbol{n}, \boldsymbol{I} \in \mathbb{N}^{N}, \boldsymbol{m} \in \mathbb{Z}^{N}\right.$ s.t. $\left.-l_{j} \leq m_{j} \leq l_{j}\right\}$
- Approximate V_{N} with $\widetilde{V}_{N}=\sum_{\boldsymbol{n} \boldsymbol{m}} c_{\boldsymbol{n} \boldsymbol{m}} \phi_{\boldsymbol{n} / \boldsymbol{m}}$
- Restrict V_{N} to $\left\{\boldsymbol{r} \in \mathbb{R}^{3}:|\boldsymbol{r}|>r_{0}\right\}^{N}$
- $\left\{P_{n}(r)\right\}_{n}$ - linearly independent

ACE: Approximate $V_{N}(\boldsymbol{R})$ where $\boldsymbol{R}=\left(\boldsymbol{r}_{1}, \ldots, r_{N}\right) \in \mathbb{R}^{3 N}$

- 1-body basis: $\phi_{n / m}(\boldsymbol{r})=P_{n}(r) Y_{l}^{m}(\hat{\boldsymbol{r}})$,
- N-body basis: $\phi_{\boldsymbol{n} \boldsymbol{m}}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right):=\prod_{j=1}^{N} \phi_{n_{j} l_{j} m_{j}}\left(\boldsymbol{r}_{j}\right)$
- $V_{N} \in \operatorname{span}\left\{\phi_{\boldsymbol{n} \boldsymbol{m} \boldsymbol{m}}: \boldsymbol{n}, \boldsymbol{I} \in \mathbb{N}^{N}, \boldsymbol{m} \in \mathbb{Z}^{N}\right.$ s.t. $\left.-l_{j} \leq m_{j} \leq l_{j}\right\}$
- Approximate V_{N} with $\widetilde{V}_{N}=\sum_{\boldsymbol{n} \boldsymbol{m} \boldsymbol{m}} c_{\boldsymbol{n} \boldsymbol{m}} \phi_{\boldsymbol{n} \boldsymbol{m}}$
- Can assume \widetilde{V}_{N} has same symmetries as V_{N}
- Permutation invariance: $c_{\boldsymbol{n} \boldsymbol{m}}=c_{\sigma \boldsymbol{n}, \boldsymbol{\sigma}, \boldsymbol{\sigma} \boldsymbol{m}}$
- Reflection symmetry: $\phi_{n / m}(-\boldsymbol{r})=(-1)^{\prime} \phi_{n / m}(\boldsymbol{r})$

$$
\widetilde{V}_{N}(\boldsymbol{R})=\frac{1}{2} \sum_{\boldsymbol{n} \boldsymbol{m}} c_{\boldsymbol{n} \mid \boldsymbol{m}}\left(1+(-1)^{\sum_{j} l_{j}}\right) \phi_{\boldsymbol{n} \boldsymbol{m}}(\boldsymbol{R}),
$$

- Restrict V_{N} to $\left\{\boldsymbol{r} \in \mathbb{R}^{3}:|\boldsymbol{r}|>r_{0}\right\}^{N}$
- $\left\{P_{n}(r)\right\}_{n}$ - linearly independent

ACE: Approximate $V_{N}(\boldsymbol{R})$ where $\boldsymbol{R}=\left(\boldsymbol{r}_{1}, \ldots, r_{N}\right) \in \mathbb{R}^{3 N}$

- 1-body basis: $\phi_{n / m}(\boldsymbol{r})=P_{n}(r) Y_{l}^{m}(\hat{\boldsymbol{r}})$,
- N-body basis: $\phi_{\boldsymbol{n} \boldsymbol{m}}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right):=\prod_{j=1}^{N} \phi_{n_{j} l_{j} m_{j}}\left(\boldsymbol{r}_{j}\right)$
- $V_{N} \in \operatorname{span}\left\{\phi_{\boldsymbol{n} \boldsymbol{m} \boldsymbol{m}}: \boldsymbol{n}, \boldsymbol{I} \in \mathbb{N}^{N}, \boldsymbol{m} \in \mathbb{Z}^{N}\right.$ s.t. $\left.-l_{j} \leq m_{j} \leq l_{j}\right\}$
- Approximate V_{N} with $\widetilde{V}_{N}=\sum_{\boldsymbol{n} \boldsymbol{m} \boldsymbol{m}} c_{\boldsymbol{n} \boldsymbol{m}} \phi_{\boldsymbol{n} \boldsymbol{m}}$
- Can assume \widetilde{V}_{N} has same symmetries as V_{N}
- Permutation invariance: $c_{\boldsymbol{n} \boldsymbol{m}}=c_{\sigma \boldsymbol{n}, \boldsymbol{\sigma}, \boldsymbol{\sigma} \boldsymbol{m}}$
- Reflection symmetry: $\phi_{n / m}(-\boldsymbol{r})=(-1)^{\prime} \phi_{n / m}(\boldsymbol{r})$

$$
\begin{aligned}
& \widetilde{V}_{N}(\boldsymbol{R})=\frac{1}{2} \sum_{\boldsymbol{n} \boldsymbol{m}} c_{\boldsymbol{n} I \boldsymbol{m}}\left(1+(-1)^{\sum_{j} l_{j}}\right) \phi_{\boldsymbol{n} \boldsymbol{m}}(\boldsymbol{R}), \\
& \widetilde{V}_{N}(\boldsymbol{R})=\sum_{\substack{(\boldsymbol{n}, l, \boldsymbol{m}) \text { ordered } \\
\Sigma_{j} j_{j} \text { ven }}} c_{\boldsymbol{n} \boldsymbol{l} \boldsymbol{m}} \sum_{\sigma \in S_{N}} \int_{S O(3)}\left(\phi_{\boldsymbol{n} \boldsymbol{m}} \circ \sigma\right)(Q \boldsymbol{R}) \mathrm{d} Q \\
& =\sum_{\substack{(\boldsymbol{n}, l) \text { ordered, }, \sum_{j} j_{j} \text { even }}} \widetilde{c}_{\boldsymbol{n} \mid i} \sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{n} \boldsymbol{I})} \sum_{\sigma \in S_{N}} \phi_{\boldsymbol{n} \boldsymbol{m}} \circ \sigma(\boldsymbol{R})
\end{aligned}
$$

- Restrict V_{N} to $\left\{\boldsymbol{r} \in \mathbb{R}^{3}:|\boldsymbol{r}|>r_{0}\right\}^{N}$
- $\left\{P_{n}(r)\right\}_{n}$ - linearly independent

ACE: Approximate $V_{N}(\boldsymbol{R})$ where $\boldsymbol{R}=\left(\boldsymbol{r}_{1}, \ldots, r_{N}\right) \in \mathbb{R}^{3 N}$

- 1-body basis: $\phi_{n / m}(\boldsymbol{r})=P_{n}(r) Y_{I}^{m}(\hat{\boldsymbol{r}})$,
- N-body basis: $\phi_{\boldsymbol{n} \boldsymbol{m}}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{N}\right):=\prod_{j=1}^{N} \phi_{n_{j} l_{j} m_{j}}\left(\boldsymbol{r}_{j}\right)$
- $V_{N} \in \operatorname{span}\left\{\phi_{\boldsymbol{n} \boldsymbol{m}}: \boldsymbol{n}, \boldsymbol{I} \in \mathbb{N}^{N}, \boldsymbol{m} \in \mathbb{Z}^{N}\right.$ s.t. $\left.-l_{j} \leq m_{j} \leq l_{j}\right\}$
- Approximate V_{N} with $\widetilde{V}_{N}=\sum_{\boldsymbol{n} \boldsymbol{m} \boldsymbol{m}} c_{\boldsymbol{n} \boldsymbol{m}} \phi_{\boldsymbol{n} \boldsymbol{m}}$
- Can assume \widetilde{V}_{N} has same symmetries as V_{N}
- Permutation invariance: $c_{\boldsymbol{n} \boldsymbol{m}}=c_{\sigma \boldsymbol{n}, \boldsymbol{\sigma}, \boldsymbol{\sigma} \boldsymbol{m}}$
- Reflection symmetry: $\phi_{n / m}(-\boldsymbol{r})=(-1)^{\prime} \phi_{n / m}(\boldsymbol{r})$

$$
\begin{aligned}
& \widetilde{V}_{N}(\boldsymbol{R})=\frac{1}{2} \sum_{\boldsymbol{n l m}} c_{\boldsymbol{n} I m}\left(1+(-1)^{\sum_{j} l_{j}}\right) \phi_{\boldsymbol{n} I \boldsymbol{m}}(\boldsymbol{R}), \\
& \widetilde{V}_{N}(\boldsymbol{R})=\sum_{\substack{(\boldsymbol{n}, l, \boldsymbol{m}) \text { ordered } \\
\Sigma_{j} j_{j} \text { ven }}} c_{\boldsymbol{n} \boldsymbol{I} \boldsymbol{m}} \sum_{\sigma \in S_{N}} \int_{S O(3)}\left(\phi_{\boldsymbol{n} \boldsymbol{m}} \circ \sigma\right)(Q \boldsymbol{R}) \mathrm{d} Q \\
& =\sum_{\substack{(\boldsymbol{n} l) \text { ordered, } i \\
\sum_{j} j^{j} \text { even }}} \widetilde{c}_{\boldsymbol{n} l i} \sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{n} \boldsymbol{i})} \sum_{\sigma \in S_{N}} \phi_{\boldsymbol{n} \boldsymbol{m}} \circ \sigma(\boldsymbol{R})=: \mathcal{B}_{\boldsymbol{n} l i}(\boldsymbol{R})
\end{aligned}
$$

- Restrict V_{N} to $\left\{\boldsymbol{r} \in \mathbb{R}^{3}:|\boldsymbol{r}|>r_{0}\right\}^{N}$
- $\left\{P_{n}(r)\right\}_{n}$ - linearly independent

ACE: Trick

(Naive) Cost: compute basis $N!$, evaluate following $\binom{J}{N}$

$$
\sum_{j_{1}<\cdots<j_{N}} \widetilde{V}_{N}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\sum_{\boldsymbol{n l i}} \widetilde{c}_{n l i} \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{n l i}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j N}\right)
$$

ACE: Trick

(Naive) Cost: compute basis N !, evaluate following $\binom{J}{N}$

$$
\begin{aligned}
\sum_{j_{1}<\cdots<j_{N}} \widetilde{V}_{N}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right) & =\sum_{\boldsymbol{n} \boldsymbol{l} i} \widetilde{c}_{\boldsymbol{n} l i} \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{\boldsymbol{n} l i}\left(\boldsymbol{r}_{\boldsymbol{j}_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right) \\
\sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{\boldsymbol{n} l i}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right) & =\frac{1}{N!} \sum_{j_{1} \neq \cdots \neq j_{N}} \mathcal{B}_{\boldsymbol{n} l i}\left(\boldsymbol{r}_{\boldsymbol{j}_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{j_{1}, \ldots, j_{N}} \mathcal{B}_{\boldsymbol{n} l i}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)+W_{N-1}
\end{aligned}
$$

ACE: Trick

(Naive) Cost: compute basis N !, evaluate following $\binom{J}{N}$

$$
\begin{aligned}
& \sum_{j_{1}<\cdots<j_{N}} \widetilde{V}_{N}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\sum_{\boldsymbol{n} l i} \tilde{c}_{\boldsymbol{n} l i} \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{n l i}\left(\boldsymbol{r}_{\boldsymbol{j}_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right) \\
& \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{n l}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{\boldsymbol{j}_{1} \neq \cdots \neq j_{N}} \mathcal{B}_{n l i}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{j_{1}, \ldots, j_{N}} \mathcal{B}_{n l i}\left(\boldsymbol{r}_{\boldsymbol{j}_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)+W_{N-1} \\
& \frac{1}{N!} \sum_{\boldsymbol{j}_{1}, \ldots, j_{N}} \mathcal{B}_{\boldsymbol{n} l}\left(\boldsymbol{r}_{\boldsymbol{j}_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{j_{1}, \ldots, j_{N}} \sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{n} \boldsymbol{l})} \sum_{\sigma \in S_{N}} \phi_{\boldsymbol{n} \boldsymbol{m}}\left(\boldsymbol{r}_{\boldsymbol{j}_{(1)}}, \ldots, \boldsymbol{r}_{\boldsymbol{j}_{\sigma(N)}}\right)
\end{aligned}
$$

ACE: Trick

(Naive) Cost: compute basis N !, evaluate following $\binom{J}{N}$

$$
\begin{aligned}
& \sum_{j_{1}<\cdots<j_{N}} \widetilde{V}_{N}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\sum_{\boldsymbol{n} l i} \tilde{c}_{\boldsymbol{n} l i} \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{n l i}\left(\boldsymbol{r}_{\boldsymbol{j}_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right) \\
& \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{n l i}\left(r_{j_{1}}, \ldots, r_{j N}\right)=\frac{1}{N!} \sum_{j_{1} \neq \cdots \neq j_{N}} \mathcal{B}_{n l i}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{j_{1}, \ldots, j_{N}} \mathcal{B}_{n l i}\left(r_{j_{1}}, \ldots, r_{j_{N}}\right)+W_{N-1} \\
& \frac{1}{N!} \sum_{\boldsymbol{j}_{1}, \ldots, j_{N}} \mathcal{B}_{\boldsymbol{n} \mid \boldsymbol{i}}\left(\boldsymbol{r}_{\boldsymbol{j}_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{\boldsymbol{j}_{1}, \ldots, j_{N}} \sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{n l})} \sum_{\sigma \in S_{N}} \phi_{\boldsymbol{n} \boldsymbol{m} \boldsymbol{m}}\left(\boldsymbol{r}_{\boldsymbol{j}_{\sigma(1)}}, \ldots, \boldsymbol{r}_{j_{\sigma(N)}}\right) \\
& =\sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{m} \mid i)} \sum_{j_{1}, \ldots, j_{N}} \prod_{\alpha=1}^{N} \phi_{n_{\alpha} l_{\alpha} m_{\alpha}}\left(\boldsymbol{r}_{j_{\alpha}}\right) \\
& =\sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{n} \boldsymbol{i})} \prod_{\alpha=1}^{N} \sum_{j=1}^{J} \phi_{n_{\alpha} l_{\alpha} m_{\alpha}}\left(\boldsymbol{r}_{j}\right)
\end{aligned}
$$

ACE: Trick

(Naive) Cost: compute basis N !, evaluate following $\binom{J}{N}$

$$
\begin{aligned}
& \sum_{j_{1}<\cdots<j_{N}} \widetilde{V}_{N}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\sum_{\boldsymbol{n} l i} \tilde{c}_{\boldsymbol{n} l i} \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{n l i}\left(\boldsymbol{r}_{\boldsymbol{j}_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right) \\
& \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{n l i}\left(r_{j_{1}}, \ldots, r_{j N}\right)=\frac{1}{N!} \sum_{j_{1} \neq \cdots \neq j_{N}} \mathcal{B}_{n l i}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{j_{1}, \ldots, j_{N}} \mathcal{B}_{n l i}\left(r_{j_{1}}, \ldots, r_{j_{N}}\right)+W_{N-1} \\
& \frac{1}{N!} \sum_{\boldsymbol{j}_{1}, \ldots, j_{N}} \mathcal{B}_{\boldsymbol{n} l}\left(\boldsymbol{r}_{\boldsymbol{j}_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{j_{1}, \ldots, j_{N}} \sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{n} \boldsymbol{l})} \sum_{\sigma \in S_{N}} \phi_{\boldsymbol{n} \boldsymbol{m} \boldsymbol{m}}\left(\boldsymbol{r}_{\boldsymbol{j}_{\sigma(1)}}, \ldots, \boldsymbol{r}_{j_{\sigma(N)}}\right) \\
& =\sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{m} \mid i)} \sum_{j_{1}, \ldots, j_{N}} \prod_{\alpha=1}^{N} \phi_{n_{\alpha} l_{\alpha} m_{\alpha}}\left(\boldsymbol{r}_{j_{\alpha}}\right) \\
& =\sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{m} \mid \boldsymbol{i})} \prod_{\alpha=1}^{N} \sum_{j=1}^{J} \phi_{\left.n_{\alpha}\right|_{\alpha} m_{\alpha}}\left(\boldsymbol{r}_{\boldsymbol{j}}\right)=: B_{\boldsymbol{n l} /}\left(\left\{\boldsymbol{r}_{\boldsymbol{j}}\right\}\right)
\end{aligned}
$$

ACE: Trick

(Naive) Cost: compute basis N !, evaluate following $\binom{J}{N}$

$$
\begin{aligned}
& \sum_{j_{1}<\cdots<j_{N}} \widetilde{V}_{N}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\sum_{\boldsymbol{n} / \boldsymbol{i}} \widetilde{c}_{\boldsymbol{n} \boldsymbol{l} i} \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{\boldsymbol{n} l}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right) \\
& \sum_{j_{1}<\cdots<j_{N}} \mathcal{B}_{\boldsymbol{n} I i}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{\boldsymbol{j}_{1} \neq \cdots \neq j_{N}} \mathcal{B}_{\boldsymbol{n} l i}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{\boldsymbol{j}_{N}}\right)=\frac{1}{N!} \sum_{j_{1}, \ldots, j_{N}} \mathcal{B}_{\boldsymbol{n} l i}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)+W_{N-1} \\
& \frac{1}{N!} \sum_{j_{1}, \ldots, j_{N}} \mathcal{B}_{\boldsymbol{n} I}\left(\boldsymbol{r}_{j_{1}}, \ldots, \boldsymbol{r}_{j_{N}}\right)=\frac{1}{N!} \sum_{\boldsymbol{j}_{1}, \ldots, j_{N}} \sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{n} \boldsymbol{i})} \sum_{\sigma \in S_{N}} \phi_{\boldsymbol{n} \boldsymbol{I} \boldsymbol{m}}\left(\boldsymbol{r}_{\boldsymbol{j}_{\sigma(1)}}, \ldots, \boldsymbol{r}_{j_{\sigma(N)}}\right) \\
& =\sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{n} / i)} \sum_{j_{1}, \ldots, j_{N}} \prod_{\alpha=1}^{N} \phi_{n_{\alpha} l_{\alpha} m_{\alpha}}\left(\boldsymbol{r}_{\boldsymbol{j}_{\alpha}}\right) \quad \text { ACE }=\underset{\text { oxpansion in terms }}{\exp } \\
& =\sum_{\boldsymbol{m}} \mathcal{C}_{\boldsymbol{m}}^{(\boldsymbol{n} \boldsymbol{l})} \prod_{\alpha=1}^{N} \sum_{j=1}^{J} \phi_{n_{\alpha} l_{\alpha} m_{\alpha}}\left(\boldsymbol{r}_{j}\right) \quad=: B_{\boldsymbol{n} / i}\left(\left\{\boldsymbol{r}_{j}\right\}\right)
\end{aligned}
$$

$\Sigma=[-1, a] \cup[b, 1]$
Define $g_{\Sigma}(z):=\operatorname{Re} G_{\Sigma}(z)$ where

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.
$z_{3} \in[a, b]$ s.t. $G_{\Sigma}(a)=G_{\Sigma}(b)$

$$
z_{3}=\frac{\int_{a}^{b} \frac{\zeta}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta}{\int_{a}^{b} \frac{1}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta}
$$

$\Sigma=[-1, a] \cup[b, 1]$
Define $g_{\Sigma}(z):=\operatorname{Re} G_{\Sigma}(z)$ where

$$
G_{[-1, a] \cup[b, 1]}(z)=\int_{1}^{z} \frac{\zeta-z_{3}}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta
$$

Green's function problem

Find g_{Σ} s.t.

- $\Delta g_{\Sigma}=0$ on $\mathbb{C} \backslash \Sigma$,
- $g_{\Sigma}(z) \sim \log |z|$ as $z \rightarrow \infty$,
- $g_{\Sigma}=0$ on Σ.

for some $z_{3} \in[a, b]$

$$
z_{3} \in[a, b] \text { s.t. } G_{\Sigma}(a)=G_{\Sigma}(b)
$$

$$
z_{3}=\frac{\int_{a}^{b} \frac{\zeta}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta}{\int_{a}^{b} \frac{1}{\sqrt{\zeta+1} \sqrt{\zeta-a} \sqrt{\zeta-b} \sqrt{\zeta-1}} \mathrm{~d} \zeta}
$$

[^0]: ${ }^{\mathrm{a}}$ Ref. 13.
 ${ }^{\mathrm{e}}$ Ref. 17.
 ${ }^{\mathrm{b}}$ Ref. 14.
 ${ }^{\mathrm{f}}$ Ref. 18.
 ${ }^{\mathrm{g}}$ Ref. 19.
 ${ }^{c}$ Ref. 15.
 ${ }^{\mathrm{d}}$ Ref. 16.
 Daw, Baskes. Phys. Rev. Lett. 50 (1983)

[^1]: ${ }^{1}$ [Silver, Roeder, Voter, Kress. J. Comput. Phys. 124 (1996)]
 ${ }^{2}$ [Mead, Papanicolaou. J. Math. Phys. 25 (1984)]
 ${ }^{3}$ [Haydock, Heine, Kelly. J. Phys. C 5 (1972), 8 (1975)]
 ${ }^{4}$ [Horsfield et al. Phys. Rev. B 53 (1996)]
 ${ }^{5}$ [Suryanarayana et al. J. Mech. Phys. Solids 61 (2013)]

