{ "cells": [ { "cell_type": "markdown", "id": "ac717206", "metadata": {}, "source": [ "---\n", "format:\n", " html:\n", " other-links:\n", " - text: This notebook\n", " href: L24-LinearLeastSquares.ipynb\n", " - text: preamble.jl\n", " href: preamble.jl\n", "---\n", "\n", "\n", "# Linear Least Squares\n", "\n", "::: {.callout-note}\n", "\n", "These notes are mainly a record of what we discussed and are not a substitute for attending the lectures and reading books! If anything is unclear/wrong, let me know and I will update the notes. \n", "\n", "::: " ] }, { "cell_type": "code", "execution_count": 276, "id": "193b2d8d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "✓ file included! \n", "\n", "using: Plots, LaTeXStrings, Polynomials, PrettyTables, LinearAlgebra \n", "\n", "functions included: \n", " Ch2: simple_iteration, Newton, orderOfConvergence, \n", " Ch3: ChebyshevNodes, ChebyshevInterpolant, Lagrange, \n", "\n", "Use @doc <> for help\n" ] } ], "source": [ "# | include: false\n", "\n", "include(\"preamble.jl\");\n", "using Images" ] }, { "cell_type": "markdown", "id": "d677d674", "metadata": {}, "source": [ "## Linear Least Squares\n", "\n", "Let us consider a rectangular linear system of equations: $A \\bm x = b$ where $A \\in \\mathbb R^{m\\times n}$ with $m > n$. \n", "\n", "::: {#nte-example1 .callout-note}\n", "# Example\n", "\n", "Consider \n", "\n", "\\begin{align}\n", " \\begin{pmatrix}\n", " 1 & 0 \\\\ \n", " 0 & 1 \\\\\n", " 1 & 1 \n", " \\end{pmatrix}\n", " \\begin{pmatrix}\n", " x \\\\ \n", " y\n", " \\end{pmatrix}\n", " = \n", " \\begin{pmatrix}\n", " 1 \n", " \\\\ \n", " 1 \n", " \\\\\n", " 1\n", " \\end{pmatrix}.\n", "\\end{align} \n", "\n", "This reads: $x = y = 1$ and $x + y = 1$. Therefore there is no solution! We say the matrix equation is *overdetermined*.\n", "\n", "What does Julia think about this?:\n", "\n", "::: " ] }, { "cell_type": "code", "execution_count": 281, "id": "cf9ac3ed", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2-element Vector{Float64}:\n", " 0.6666666666666665\n", " 0.6666666666666667" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "A = [ 1 0 ; 0 1 ; 1 1 ]\n", "b = [ 1 ; 1 ; 1 ]\n", "\n", "A \\ b" ] }, { "cell_type": "markdown", "id": "436396e3", "metadata": {}, "source": [ "::: {.callout-note icon=false}\n", "# @nte-example1 cont.\n", "\n", "What does $\\bm x = ( \\frac23 , \\frac23 )^\\intercal$ have to do with $A$ and $b$? \n", "\n", "We can see that \n", "\n", "\\begin{align}\n", " \\begin{pmatrix}\n", " 1 & 0 \\\\ \n", " 0 & 1 \\\\\n", " 1 & 1 \n", " \\end{pmatrix}\n", " \\begin{pmatrix}\n", " \\frac23 \\\\ \n", " \\frac23\n", " \\end{pmatrix}\n", " = \n", " \\frac23\n", " \\begin{pmatrix}\n", " 1 \n", " \\\\ \n", " 1\n", " \\\\\n", " 2\n", " \\end{pmatrix}.\n", "\\end{align}\n", "\n", "You can show that the *residual* $\\left|A \\bm x -b\\right|$ is equal to $\\frac{\\sqrt{3}}{3}$. Could we have chosen $\\bm x$ so the error between $A \\bm x$ and $b$ was smaller?\n", "\n", "\\begin{align}\n", " |A \\bm x - b|^2 &= \\left| \n", " \\begin{pmatrix}\n", " 1 & 0 \\\\ \n", " 0 & 1 \\\\\n", " 1 & 1 \n", " \\end{pmatrix}\n", " \\begin{pmatrix}\n", " x \\\\ \n", " y\n", " \\end{pmatrix}\n", " -\n", " \\begin{pmatrix}\n", " 1 \n", " \\\\ \n", " 1 \n", " \\\\\n", " 1\n", " \\end{pmatrix}\n", " \\right|^2 \\nonumber\\\\\n", " %\n", " &= \\left| \n", " \\begin{pmatrix}\n", " x-1 \n", " \\\\ \n", " y-1 \n", " \\\\\n", " x+y-1\n", " \\end{pmatrix}\n", " \\right|^2 \\nonumber\\\\\n", " %\n", " &= (x-1)^2 + (y-1)^2 + (x+y-1)^2. \\nonumber\n", "\\end{align}\n", "\n", "Intuitively, you can see that, in order to minimise this quantity, we want to make each term equally small: $(x-1)^2 = (y-1)^2 = (x+y-1)^2$. You can achieve this when $x = y = \\frac23$, which is what Julia did!\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "ad4bf42a", "metadata": {}, "source": [ "There are many situations where we might want to approximately solve $A \\bm x = b$ e.g. Statistics: \n", "\n", "### Population of the UK \n", "\n", "Here we consider the population of the UK in the years since 1970:\n", "\n", "Data from @ons" ] }, { "cell_type": "code", "execution_count": null, "id": "6f4cf15a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3daUAT194G8BMS9iXsq2xiFSgqCOKCiFoQwboiaouta9Vq3eqOWm2t2upb1Naq1dZa8VatClqxahUVFVdwYQcRZN93AgGSzPth7o1piEqVJMA8v0/JyZnJf44kjzNzJsOiKIoAAAAwlYqyCwAAAFAmjrILAGCKRYsWqaio7N69u13WFhcXt2/fvsDAwKCgoHZZYfuKjY29fv16QUGBUChctGiRi4uLsisCeCnsEQIoSHh4+NGjR//tUvHx8QcOHEhPT5dqz87OPnTo0IMHD9qpuva0e/fuIUOGrF+//ujRoydPniwqKpLZbfTo0SwW6/jx461fevToEYvF6tGjh7glKiqKxWKNGDFCqmdubm6vXr1YLFZISEhLS0s7bgUwB4IQoEOLioqaN2/e7du3pdpNTU2HDRvm4OCglKpe7auvvtLV1U1PT6+tra2srPTz85PTG6Wnpw8ZMiQjI2P+/Pnh4eGqqqpyeiPo2nBoFKBT8vHxuXbtmrKrkKGsrKyysnLo0KE9e/aU6xslJyePHDmysLBw9erV33zzjVzfC7o2BCF0HY2NjSkpKVwut0ePHvn5+ZcvX66qqurZs+fIkSPV1NRa98/MzLxx40Z5ebm5ufnw4cOtra0lX62urn727JmZmVm3bt3S0tJiYmIaGxv79u3r4+OjovLiUEptbe3Tp09NTExsbGwkF8/Ozq6srHR0dNTW1n5FzZmZmY8fPy4oKFBRUXFycvLx8ZHcrUlKSqKPK+bk5MTHx9ON9Drp8szNza2srCRXWFtbe+XKlZycHDU1tX79+g0cOJDFYkl2ePTokYqKSt++fRsbG//666/nz5+bmJj4+/ubmZm9enjFHjx4EBcX19jYaG1t7evra2BgIH7p8ePHWVlZhJCWlha6YG1tbUdHxzauue0ePHgQEBBQUVGxadOmjRs3tvv6gVkogK4iISGBEDJmzJhdu3ZxOC/+k+fk5JSZmSnZk8/nz5gxQzIhOBzO8uXLBQKBuM/p06cJIcuWLVu6dKnkR8bb27uiokLc7eLFi4SQBQsWSBUzbdo0Qsjt27fFLVwu19DQUPy0oaGh9T6Tvb39gwcPxH1kHvm8e/cuRVF//PEHIWT16tWSb/r7779LxhIhxNPTMzs7W7KPjo6OsbHx/fv3u3XrJu6mra39559/vnaECwsLhw4dKrl+XV3dgwcPijtIvTshpH///i9bW2BgICHk2LFjrV96+PAhIcTBwUHccu7cOULI8OHDKYq6du2arq4ui8XatWvXa2sGeC2cI4SuJi4ubu3atTt27MjOzk5ISJg1a1ZqampgYGBjY6O4z+zZsw8fPuzq6nrx4sVnz55FRkba2tp+9913a9askVrbiRMnjhw58ttvv+Xm5t6/fz8wMPDmzZuTJ0+m3voC3JaWFg0NjZ07d8bExDx9+vT27dtLlizJyckZM2ZMbW0t3ee33377+OOPCSErVqy4/D8v28G6ePFiSEhIc3Pz7t2709PTHzx4MHXq1Pv37/v6+tbV1Un2bGhoGDNmjJ+f3+XLl+/du7d8+fKGhobp06eL31cmPp8/atSoGzdujB8//u7duxkZGT/99JOKisonn3xy4sQJuk9kZOSvv/5KCPHw8KCr3bNnz1sOlJSoqKiAgICGhoZDhw4tWbKkfVcODKXsJAZoN/QeISEkLCxMsn3UqFGEkD179tBP4+LiCCGGhoaVlZXiPllZWWpqahwOJycnh26h9wgJIZK7Ss3NzXQOXbp0iW554z1CmVatWkUIkdzH2rRpEyHk0KFDUj2l9ghFItG7775LCDly5Ii4j0gk8vX1JYRs27ZN3Kijo0MIWbRokeTaxo8fTwiJiIh4RW379u0jhAwYMEByvzkyMpIQYm1t3dLSQrekpaURQvz9/V+9pdQb7REaGRlxOBwNDY227L8CtBH2CKGr0dXVnTt3rmTL8uXLCSH0VzYhJCIighAyb948yeN49vb2U6dOFQgEZ8+elVy2V69e77//vvipqqrq4sWLJdfWvsaOHUsIuX///r9dMCMjIzk52cbG5sMPPxQ3slis1atXk/9tsqSVK1dKPqUndmZnZ7/iLehNXrlyJZvNFjeOGzfO2dk5Ly9PMRdyVFVVCQQCHR0de3t7BbwdMASCELoaBwcHqfkprq6uhJDk5GT6aUpKCiHEzc1NakF3d3fJbrQ+ffpITTaRWtvbePbs2SeffOLi4qKvr89isVgs1pAhQwgh5eXl/3ZVdD19+/aVTClCiIeHR+tqtbW1JU8QEkLomTLFxcWveAt63Pr16yfZyGKx6Bb6VXkbOnTop59+Wl5ePmLEiKSkJAW8IzABZo1CV2NqairVYmRkxGazxefJ6uvrZXajW6ROp7Wx2xtITEz09vaur6/39vYODAw0MDBQUVEpKSnZuXOnUCj8t2t72Ubp6+urqak1NDQIhUJxRmpqakqlOz0PlnrliU/6LVpPLqVb3mBA6Dfl8/mtX6IbJWfn0lgs1o8//kgI2bdv33vvvRcdHY3frIG3hyCErqakpESqpby8XCgU6unp0U91dXVldqNbxN1etjapbvSXdevoomPjFTZv3lxTU/Pzzz/Pnj1b3Hj16tWdO3e+ekGZXrZRVVVVzc3NOjo6UnuKb/YW1dXVJSUlUocl6f1IqXFrCy6XSwgpLCxs/VJBQQEhRF9fv/VLdBZSFLV//35kIbQLHBqFriYzM1Nq74SeeSH+uqQfiC/LE6PPcvXu3Vuy8cmTJ1L7SVJrMzc3J7ISKDU19dV1PnnyhBAydepUycbWVdFXQL52H5Gu5/HjxwKBQLKd3ih6Hs1boldCTzUSo/43+egN0oheocyBog+0vmydLBZr79698+fPLy0tfe+993CMFN4SghC6Gh6Pt3//fvFTiqK+++47Qoj4x6knTZpECDlw4EBFRYW4W2Zm5h9//KGqqkrPnxR7+vTpmTNnxE+bmpp++OEHybXZ2dmpqKjcvHlTchcwIiKi9a+DSjE2NiaE5OXliVtqamrCwsKkullaWhJC8vPzX722d955x9XVNT8/X/LnTEUi0bZt2wghwcHBr168Lehx+7//+z/JVD59+nR6erq9vT19hvVfmTBhAovFioiIyMjIkGyvrKw8cOAAkRjk1ugsnDdvHp2F7XLKFphLqXNWAdoTffmElZWVhobGli1bkpKS7t69S8+ifPfdd/l8vrjnrFmzCCEuLi5nz55NSko6duwY/bsw69atE/ehL5+wsbHhcrn79+9PS0u7du3ae++9RwgJDAyUfN8xY8YQQnx8fKKioqKjo9evX6+pqUlfC/+KyyfWrVtHCOnbt+9ff/2Vnp4eGRnZu3fv7t27E0LGjh0r7paUlMRisQwNDUNDQ/ft2/fTTz+VlJRQsi6oj46OZrPZmpqa27dvT0hIiImJoUPd0dGRx+OJu9EX1EsNHT2tdMWKFa8Y3qamJjrtAgMDo6Ojk5KSdu7cqaOjQ4eZuFvbL5+gKGrhwoWEEBMTky1btvz999/Xrl3bvXs3PQgBAQEikUjcU/KCejGRSDRv3jxCiKmpaVJSUlveEaA1BCF0HeJfltm/f7/kb6q5urqKrw6kNTc3L1y4UPK0mZqa2oYNGyS/eekg/Pzzz9esWSM5tWTkyJHV1dWSa8vPz5c8iKepqXn48OHXXkfI4/H8/f0l/1fq4+Nz/fp1qSCkKGr37t2Ss2Be8csykZGRUpNZfHx8CgoKJPu8cRBSFFVaWkpflClmZGR09OhRyT7/KggFAsHGjRvpSxvFVFVV58+fLxne1EuCkEIWQntgUbhDPXQViYmJffr0GTNmzJ9//llSUnL16tXa2tpevXp5e3vLnCpSUFBw8+bN6upqY2NjHx8fExMTyVcjIiKCgoI+//zz7777Ljs7+9atW3w+v2/fvv3795eackkIaWlpuXbtWnZ2NpfL9fPzMzIyKi0tra+vt7S01NDQoPvQP8JJ7+6IPXz4MDExkaIoFxcXDw+P5ubm/Px8LS0t+tSjpNraWvqyCisrK3V19fr6+qKiIkNDQyMjI8lujY2Nt27dysrKUldXd3Nz69u3r9R6nj9/zmKxbG1tJRt5PF5JSQmXy5Vam0wpKSlxcXENDQ22trZDhw6VulilpaUlLy9PU1PTwsLitaui1dfX37lzJycnRyAQWFtbDxgwgD5uLKmhoaG4uFjmakUi0fPnzwkhurq6Uv+IAG2BIISuQzII335tkkH49msDgA4Lk2UAAIDREIQAAMBobPonfQG6ABUVFSMjoxEjRjg7O7/92thsdrdu3YYNG4aftQTo2nCOEAAAGA2HRgEAgNEQhAAAwGgIQgAAYDQEIQAAMBqCEAAAGA1BCAAAjNZZg7C2tlbq/qUikUhZxXQuGKg2wkC1Ef2zxcquonPAQLWRgj99nTUICwoKDh48KNnC4/GUVUzngoFqIwxUGzU1NUndDRhkEolEjY2Nyq6ic1Dwp6+zBiEAAEC7QBACAACjIQgBAIDREIQAAMBoCEIAAOgE+Hz+2k1bHFwHWTl79PPxj46+2l5r5rTXigAAAOSkubnZw2dkVq+gxvlXCEetsCI3eO3StSGpK5csfPuVY48QAAA6up9//S3bxq9x6ALCUSOEECObqtkndvx4sL6+/u1XjiAEAICO7uzlGw29x/6jia0q7DUsPj7+7VeOIAQAgI5OKBQSFelzeZQKp11+zAFBCAAAHZ3vEE+19Cv/aKIodkaMm5vb268cQQgAAB3dZ/PmWDwKZz8599/n/Dq9Pz77aEKgoaHh268cs0YBAKCj09HReXDtwmerN8T832aKo6GpIlq3dMGcmR+3y8oRhAAA0AmYmJicOLSfENLS0qKqqtqOa8ahUQAA6EzaNwUJghAAABgOQQgAAIyGIAQAAEZDEAIAAKMhCAEAgNEQhAAAwGgIQgAAYDQEIQAAMBqCEAAAGA1BCAAAjIYgBAAARkMQAgAAoyEIAQCA0RCEAADAaAhCAABgNAQhAAAwGoIQAAAYDUEIAACMhiAEAABGQxACAACjIQgBAIDREIQAAMBoCEIAAGA0BCEAADAaghAAABgNQQgAAIyGIAQAAEZDEAIAAKMhCAEAgNEQhAAAwGgIQgAAYDQEIQAAMBqCEAAAGA1BCAAAjIYgBAAARkMQAgAAoyEIAQCA0RCEAADAaAhCAABgNAQhAAAwGoIQAAAYDUEIAACMhiAEAABGQxACAACjceS36szMzNOnTzc0NLi6uk6YMIEQkpiYeOfOHXGHKVOmcLlcqaX4fH54eHhOTo63t7e/v7/8ygMAACDy2yP866+/PDw88vPzORzOf/7zH7rxypUr3333Xfz/NDU1tV5w9OjRJ06c0NPTmzdv3q5du+RUHgAAAE0ue4R8Pn/mzJlHjhwZO3as1EuDBg366aefXrbgrVu3kpKScnJyNDQ0Bg0aFBwcvGDBAjU1NXkUCQAAQOS0R3jv3j02m+3q6vrLL79EREQ0NzeLX8rJyfnhhx9OnTrF4/FaL3j16tVhw4ZpaGgQQry8vBoaGpKTk+VRIQAAAE0ue4TZ2dksFmvChAkBAQG///77tm3bYmNj1dTU9PT0TE1Ns7Ozjx8/vnz58tjY2G7dukkuWFxcbGZmRj9WUVExNTUtLCx0c3Nr/RaNjY2lpaUrVqwQt+CcYhvx+XxVVVVlV9EJYKDaiM/ns9lsoVCo7EI6OpFIxOfzVVQwRfH12vHTp6qqymazX91HXpNlCgsLo6OjHR0dhUKhk5PTyZMnQ0JCZs+ePXv2bLrDhAkTtmzZsm/fPsmlVFRURCKR+KlQKHzZBnA4HA6HY2hoKG4xNDR87dYCIYTNZmOg2gID1Ubs/1F2IR0di8XCQLVROw4Ui8V6bR+5BKGlpaW6urqjoyMhhM1m9+7dOysrS6rP8OHD//zzz9YLxsXF0Y8FAkFZWZmlpaXMt1BVVTU0NAwNDRW31NXV4f/vbaGqqoqBagsMVBvR/2HFWL2WSCQSCoUYqLZQ8KdPLjvpQ4YM0dbWTkpKIoQIBILHjx/36tWLENLS0kJ3oCjq8uXLdFISQh4+fFhdXU0ICQwMvHbtGv340qVLxsbG7777rjwqBAAAoMllj1BLS+urr74KDAycNGnS3bt37e3tJ06cSAh57733TExMjI2NHzx4UF9ff+DAAbr/qFGjDh48OG7cOFdX18DAQB8fnyFDhpw6dSosLAyHEQAAQK5YFEXJadUJCQkPHjywtbUdMWIEfX44Jyfn/v37NTU1NjY2w4cPF+/5xsbG9urVy9jYmBBCUdSVK1dyc3MHDRrk7Oz8spWnpqYGBQWlpKSIW+rq6nR1deW0LV0JBqqNMFBtRE+WwRG/16Iny2hpaSm7kE5AwZ8+Of6yTJ8+ffr06SPZYmtra2tr27qnl5eX+DGLxfLz85NfVQAAAJIwkRcAABgNQQgAAIyGIAQAAEZDEAIAAKMhCAEAgNEQhAAAwGgIQgAAYDQEIQAAMBqCEAAAGA1BCAAAjIYgBAAARkMQAgAAoyEIAQCA0RCEAADAaAhCAABgNAQhAAAwGoIQAAAYDUEIAACMhiAEAABGQxACAACjIQgBAIDREIQAAMBoCEIAAGA0BCEAADAaghAAABgNQQgAAIyGIAQAAEZDEAIAAKMhCAEAgNEQhAAAwGgIQgAAYDQEIQAAMBqCEAAAGA1BCAAAjIYgBAAARkMQAgAAoyEIAQCA0TjKLgAAgOnS0tKu37jJb2oePKC/p6enssthHAQhAIDSiESiOYtXRN1Nqnp3vIitbnAyrLdeS9SJI9ra2soujUEQhAAASrPrx/0nn5P6+efppxWDp9+++9vcpav+c/BH5RbGKDhHCACgNPsP/17vHyrZ0jxw+pUbsSKRSFklMRCCEABAaXiNfKLJlWpk6RjX1NQopR5mQhACACiNtqYGaayVahTVlXG50ukI8oMgBABQmvkzPtS5tEWyRe3uET+fISoq+HJWHEyWAQBQmqUL5yekfv7X/vcrXSaI2OqGmZdddPgH/ghXdl3MgiAEAFAaFRWVw3t3paamXo25wW+qHzJ3yYABA5RdFOMgCAEAlMzJycnJyUnZVTAXDkMDAACjIQgBAIDREIQAAMBoCEIAAGA0BCEAADAaghAAABgNQQgAAIyGIAQAAEZDEAIAAKMhCAEAgNEQhAAAwGhtCsLU1NT//Oc/qamp/3btlZWVqamptbUv7rYlEAiePXtWUFDwb1cFAAAgD7KDcNSoUaGhofTj8+fP9+nTZ9q0ab179w4Pb+vNQQQCwbx58+zs7IKDg+3s7B49ekQIOXTokLm5ub+/v6enp7u7e05OTusFbWxsuFyuoaGhoaHhBx988EYbBQAA0FYygrClpeXq1au+vr700w0bNri7uycnJy9atGj16tUtLS1tWe9XX32VlJSUm5ublJRUVFTUq1cvQsg777zz6NGjzMzM3Nzcd955Z/Xq1TKXvXHjRmVlZWVl5bFjx950uwAAANpERhBWVFS0tLTY2dkRQoqKih4/frxixQpnZ+fQ0NCioqLc3Ny2rHfv3r1btmzR1NRsampSV1fX0tIihHh7e1tbWxNC2Gz2sGHDXraqpqamurq6N94kAACAtpMRhJqamoQQHo9HCImKimKxWMOHDyeE6OrqEkKqq6tfu9LS0tKKioqIiAhnZ+du3bpNnTq1sbFRsoNAIAgPD3///fdlLh4YGGhlZdWzZ8/o6OiXvQVFUXw+P15CVVXVawsDAACQIuPGvFwu197e/vvvvw8NDT1w4ICnp6eRkREhJCsrixBiZmb22pVWVlYSQng8XmZmZkNDw4gRI8LCwtatWyfusHz5coqiVqxY0XrZa9euOTg4UBS1Z8+eSZMmZWZm0u8upa6urri4+JNPPqGfslis2bNnf/zxx23aaGbj8XgsFkvZVXQCGKg24vP5bDZbVVVV2YV0dCKRiM/ni0QiZRfSCbTjp09DQ4PDed0t6ClZTp48qaamRghRU1O7ePEi3bh161Zzc3ORSCRzEUl0EN64cYN+GhYW5u/vL3517dq1bm5uVVVVr12PlZWV+N2lpKSkODk5SbbU1ta+doVAYaDaDAPVRo2Njc3NzcquohMQCoU8Hk/ZVXQOCv70yc7JSZMm9e/fPzEx0cXFhT5ZSAhxcXH55Zdf2pLSBgYGDg4O4oOoVVVV9GFVQsimTZuioqKuXr2qr6//6pU0NjbW1dXp6em99u0AAADe2Et3GG1tbW1tbSVbxowZ0/b1Llu2bP369fr6+hUVFfv27Tty5Aj53wyajRs3RkREEEJ0dHQ+/PBDQsjixYvNzc1DQ0MTEhKioqL69+8vEAh27979zjvveHh4vOGWAQAAtMFLg1AgECQmJubl5TU1NUm2BwcHt2W9CxYs4HA4X3/9NZfL/e233wICAgghurq6s2bNysvLy8vLI4QYGhrSnV1cXAwMDOiWwsLCHTt2qKqqDho0aMmSJTjxAAAAcsWiKKp1661bt2bMmPHs2bPWL8nsr3ipqalBQUEpKSnilrq6OvEBWHgFDFQbYaDaCJNl2oieLENfSwavpuBPn+w9wunTp7PZ7FOnTjk7O6urqyusGgAAAAWTEYRVVVVZWVmXLl0aOXKk4gsCAABQJBkX1KupqXE4HEzXBAAAJpARhNra2lOmTPn9998VXw0AAICCyT5HOHr06GXLlhUUFPj7+9PzOcXaOGsUAACgU5AdhMuWLSspKYmIiKAv+JPUQWaNAgAAtAvZQXjv3j2hUKjgUgAAABRPdhBK/aYMAABAV/Wq3+ROS0t7/Phxfn6+hYWFi4tL3759FVYWAACAYsgOwsbGxpkzZ544cUKy0c/P78SJE1JzZwAAADo1GZdPEEKWL19++vTp1atXP3r0qLi4ODExccuWLXfu3Jk5c6aC6wMAAJArGXuEzc3Nv/3227Zt28Q3zjUzM3NxcbG3tw8JCSktLTU1NVVskQAAAPIiY4+wvLy8oaFh1KhRUu2jRo2iKConJ0chhQEAACiCjCDU19fncDiJiYlS7XSLiYmJIuoCAABQCBlBqKWlFRAQsGjRosjISJFIRDdGR0fPmDHD3d1dfMN6AACALkD2ZJl9+/aZmZlNnDhRS0vLzs5OS0vL19dXIBCEh4cruD4AAAC5kn35hJWV1cOHD0+ePHnjxo3q6mpdXd1BgwZNnTpVR0dHwfUBAADI1UsvqFdXV582bdq0adMUWQ0AAICCyT40CgAAwBAvgvDkyZM2NjZ79+4lhLi7u9u8hPJKBQAAaH8vDo1aW1uPGTOmR48ehJCRI0fW1tYqryoAAAAFeRGEAwcOHDhwIP1427ZtSqoHAABAoXCOEAAAGO3FHmFWVtadO3deu0BISIg86wEAAFCoF0EYExMza9as1y6AIAQAgK7kRRBOmTLFz89PiaUAAAAo3osg1NLS0tLSUmIpAAAAiofJMgAAwGgv9gjPnDmzfv361y6QlJQkz3oAAAAU6kUQGhkZubm5KbEUAAAAxXsRhN7e3t7e3kosBQAAQPFwjhAAABjtxR5hXl7e48ePnZycevTo8ffffzc1NclcYMyYMYqqDQAAQO5eBOGVK1dmzZq1devWtWvXfvTRR6WlpTIXoChKUbUBAADI3YsgnDhx4oABA8zMzAghN2/eFAgEyqsKAABAQV4EIZfL5XK59OOePXsqqR4AAACFwmQZAABgNI7M1oaGht27d//55585OTl8Pl/ypcrKSoUUBgAAoAiyg3DmzJmnTp167733Jk2ahB8gBQCALkxGEPJ4vNOnT+/evfuzzz5TfEEAAACKJOMcYUtLi1AoHDx4sOKrAQAAUDAZQaivr+/l5XX9+nWFFwMAAKBoss8RHjlyJCgoqLGx0c/Pz9jYWPKl7t27K6QwAAAARZAdhIQQHR2d9evXt74xE35ZBgAAuhLZQThx4sTCwsKvvvrKwcFBVVVVwTUBAAAojIwgLCsre/LkSWRk5Pjx4xVfEAAAgCLJmCyjpaXFZrMtLCwUXw0AAICCyQhCbW3tqVOnHj16VPHVAAAAKJjsc4Te3t7r1q17+vTpyJEjdXR0JF+aO3euQgoDAABQBJbMWaDm5uYlJSUyF+ggs0ZTU1ODgoJSUlLELXV1dbq6ukosqbPAQLURBqqN+Hw+m83GrLrXEolEfD4fP1rZFgr+9MneI0xPTxeJRAorAgAAQFn+EYTXrl0bMGCAlpaW+MaEAAAAXds/JsvMnj3bxMRk/Pjxv/76a1lZmbJqAgAAUJh/BGF8fPzhw4f19PSWLVtmbm7u4eGxadOm1NRUZRUHAAAgb/8IQgMDg+Dg4CNHjpSXl8fExHh5ef3yyy/Ozs4ODg5Lliy5desWThwCAEAXI+M6QkIIh8MZMmTI7t27c3Nz79+/P3Xq1KtXr3p7e3fr1m3evHlPnjxRcJUAAAByIjsIxVgsVv/+/bds2ZKYmJidnb1p06bCwsI///xTMcUBAADI20vvPtGanZ3d3Llz586diwOkAADQZbxmj1D2MipvshQAAEAHJK9Ioyhq//79Q4cO7d+//yeffCJuP3bsmLe39+DBg3/66SeZCyYnJ48bN87d3X3x4sV1dXVyKg8AAID2Lw6N/itffPHF2bNnt2/fbm5uHhcXRzfeunXrs88+O378uLa29uTJk01NTSdMmCC5VFNT08iRIxcvXvz++++HhoYuWrTo8OHDcqoQAACAvOy3Rt9SSUmJra3tkydPevXqJdn+4Ycf2tnZbd26lRCye/fuqKioy5cvS3Y4fvz4119/nZSURAh5/vy5o6NjYWGhoaFh67fAb42+MQxUG2Gg2gi/NdpG+K3RtlPwp08uh0YfPnxoZ2f38OHDCRMmzJo1iw42QkhCQoKnpyf92NPTMyEhQWrBxMTE/v3704/t7Oy4XG56ero8KgQAAKDJ5dBoXl5eXl5eZDavd0AAAB5uSURBVGTkqlWrYmNjvby8UlNTLS0ty8rKxL9iamBgUFZWJhKJJKfelJaW6uvri58aGBi87CYYNTU1z549s7e3F7csXLhw/vz58ticLobH47FYLGVX0QlgoNoIe4RtRO8RYtZ9W7Tjp09DQ4PDeU3SySUIdXV1GxsbDx48yOVyBw0adPbs2cjIyIULF+rp6TU0NNB96uvr9fT0pCagcrlcyQkydXV1krko1dPGxubSpUviFh0dHalbJ4JMFEVhoNoCA9VGHA4HQdgWIpGIw+Hg0GhbKPjTJ5cg7N69O4fDER/hNTQ0rK2tJYTY29s/ffqUbnz69KmdnZ3UgnZ2dqdPn6Yf19TUlJWVte4jpqqq2r17d/FTTDEFAIA3IJdzhJ6enj169Dh27BghJCcnJyYmxsfHhxASEhLyyy+/8Hi8lpaWffv2hYSE0P2//fbbtLQ0QsjkyZMfPHjw8OFDQsi+ffsGDBjwiiAEAAB4e3LZI2SxWIcPH/7ggw++/PLLqqqqDRs2DB48mBASEhJy9epVGxsbNpvt5eX12Wef0f3379/v4uLi6Ohoamq6Z88eX19fLperqqoaEREhj/IAAADE5HL5BE0kEpWVlRkbG7PZbMn22tpaoVBoYGDwsgWbm5srKyvNzMxecbIUl0+8MQxUG2Gg2giTZdoIl0+0nYI/ffK6oJ4QoqKiYmZm1rpdT0/v1QuqqamZm5vLpygAAIB/wK+GAgAAoyEIAQCA0RCEAADAaAhCAABgNAQhAAAwGoIQAAAYDUEIAACMhiAEAABGQxACAACjIQgBAIDREIQAAMBoCEIAAGA0BCEAADAaghAAABhNjrdhAgAmq66u3hb2w837D7U0NSeN9v1k5nSpW5MCdBDYIwSA9pecnOw8aMTOom53RoRFe6xfeSHbzduXx+Mpuy4AGRCEAND+Ppy3uOiDwy0DphHDbsTsnfqAL9LfCfrym++UXReADAhCAGhntbW1xXXNxNJJsrF54MeR5y8pqySAV0AQAkA74/F4LE2udKuqZlNTkzLKAXgNBCEAtDNTU1OqMpcIW/7RWpDcvbu9kioCeBUEIQC0Mzab/clHH+qcWU0Ezf9tqiszPL1k27rlSq0LQDZcPgEA7W/z+tVq3363J2wwsXFVaW5Qr3y+d8fmQQMHKrsuABkQhADQ/lgs1hdrVqz5fHF6erq2tra9vT2LxVJ2UQCyIQgBQF7U1NR69+6t7CoAXgPnCAEAgNEQhAAAwGgIQgAAYDQEIQAAMBqCEAAAGA1BCAAAjIYgBAAARkMQAgAAoyEIAQCA0RCEAADAaAhCAABgNAQhAAAwGoIQAAAYDUEIAACMhiAEAABGQxACAACjIQgBAIDREIQAAMBoCEIAAGA0BCEAADAaghAAABgNQQgAAIyGIAQAAEZDEAIAAKMhCAEAgNEQhAAAwGgIQgAAYDQEIQAAMBqCEAAAGA1BCAAAjIYgBAAARkMQAgAAoyEIAQCA0RCEAADAaBw5rffGjRslJSX0Yx0dnYCAAEJIcnJySkqKZLfx48erqqpKtpw/f76hoYF+bGFhMWTIEDlVCAAAQOQXhJs3b66vr7e2tiaEWFhY0EGYkpJy8uRJukNmZmZhYeHEiROlFvz0008dHR319fUJIf369UMQAgCAXMkrCAkhy5Ytmzx5smRLcHBwcHAw/TgoKMjPz4/NZrdecMeOHX379pVfYQBvKT8/PyMjw8zMzNHRUebfMAB0InIMwvj4+MbGRhcXF3d3d6mXysvLz58//+jRI5kLRkdHJycn9+vXz9HRUX7lAbyBioqKD+YsfJxX2WLVV7W2SK/62dH9uwcO8FR2XQDw5uQVhCYmJjk5OUVFRatWrfLz8wsPD2exWOJXf/vtNw8PDycnp9YL2traPnr0SCAQzJ8///PPP9+0aZPM9fP5/LKyspUrV4pbfH19hw0b1s6b0RU1NTWpqakpu4pOQOZAjZww9YnbQuHo0fTTsorccR9Puv/3GXNzc4UX2FE0NTWx2WyRSKTsQjo6kUhEj5WyC+kE2vFrSlVVVUXlNdNC5RWEv//+O/2gtLTU2dn50qVLo0aNEr966NCh5cuXy1zw5s2b9IPExER3d/dp06b16NFDZk8VFRX6VKL4afuUDvASycnJuSKusPfoF01GNhVDl/z0a/jGtStfvhwAdGhyPDRKMzU1dXd3T0lJEQfhnTt3cnNzxScLX6Z3795WVlZpaWkyg1BDQ8PIyGjdunXilrq6OnV19XasvKtqbm7GQLVF64HKyclptOgj1U3YzTUhLYbJQ0pRFJvNlpr+Da2JRCKKopj8p9J2Cv6aksteFEVR4sc1NTUJCQkODg7ilkOHDk2ZMkVXV1fcUlBQUFpaKrVgVlZWQUHBy3YHARRPX19fraFcurWu1MTQQBnlAED7kMseYXFxsZ+f37Bhw1RVVc+ePduvX78xY8bQL/F4vD/++OPChQuS/ZctW9atW7ewsLCYmJjQ0FBPT8+WlpY//viDvpRCHhUCvIFBgwapZy4j9RVEx+i/TRRlcPunWd8uVWpdAPBW5BKEpqame/bsSUpKEolEhw4dkpzD0tDQ8Ouvvw4ePFiy/6pVqzQ1NQkhAwYMWL9+/dOnT9XV1WfOnOnh4SGP8gDejIaGxqHvt89YOrrCe4nQph+pyje6tWfq0L7e3t7KLg0A3hxL8mhkJ5KamhoUFCT5OzV1dXWSh1vhZTBQbfSygSopKfl+/88PElLtbaxmfxDk6cn0ayf4fD7OEbaFSCTi8/laWlrKLqQTUPDXlNwnywB0MWZmZls2rnt9PwDoJHDJAQAAMBqCEAAAGA1BCAAAjIYgBAAARkMQAgAAoyEIAQCA0RCEAADAaAhCAABgNAQhAAAwGoIQAAAYDUEIAACMhiAEAABGQxACAACjIQgBAIDREIQAAMBoCEIAAGA0BCEAADAaghAAABgNQQgAAIyGIAQAAEbjKLsA6ChEIlF6enpeXl6PHj26d++u7HIAABQEQQiEEJKUlBQ8a0GlplWToZ1a8Z7uWsKTh/dbW1sruy4AALlDEAKpra0dOemjomlHiXlPuqU8M/a9cVNSH9xks9nKrQ0AQN5wjhDI78f/qHT7UJyChBCqh1e5mVtMTIwSqwIAUAwEIZDHaZlNlr2lGqvN+qalZyilHgAARUIQAjE3MmDVl0s1avBKjAwNlFIPAIAiIQiBTJk41vDeL0QkfNHUxNNNOuPn56e8ogAAFARBCMTJyWnptHHGewNIwl+kKI0Vf9pkr3/YxjWGhobKLg0AQO4waxQIIWT9iqUTA0fu+/U/TxNO93HssejiKVw7AQAMgSCE/3J2dv5hxxZlVwEAoGg4NAoAAIyGIAQAAEbr+odGq6ur7927V1VV1adPH2dnZ2WXAwAAHUsXD8KDh8M3fLOT7ziySdNQZ/exPiZqEeE/c7lcZdcFAAAdRVcOwpu3bq35PrxySQxR1SCE8MmyG/GngmfM+zvyuLJLAwCAjqIrnyP85oeDlaM30ylIE7hPepJVWFFRocSqAACgQ+nKQZj9PIeY95JqpMx75ubmKqUeAADogLpyEJqYmJCqAqlGVlWBqampUuoBAIAOqCsH4YLpU7jXvvtHU+4jc9UmKysrJVUEAAAdTleeLDN5UlD0rXsRP42t8JhBtA20sm6ZZV6MPIOZMgAA8EIX2SNsbGy8fv26VCOLxTqwe8eVg9s2WGV/Iow+OMkpPT62e/fuyiiwA7l48aKyS+gcbt68WV9fr+wqOoGUlJTnz58ru4pOoKys7MGDB8quohMQCoWXL19W5DuyKIpS5Pu1l9TU1KCgoJSUFPppfHz8nDlzHj16pNyqOgVVVdXGxkYOpysfDGgXgwcP3r59+5AhQ5RdSEe3dOlSKyurlStXKruQju7kyZPHjx8/ffq0sgvp6HJzc728vPLy8hT2jl1kjxAAlKiT/n9awTBKHRaCEAAAGA1BCAAAjNZZTxTV19fn5+f7+fnRT+vq6p49eyZ+Cq8gEolGjRrFYrGUXUhHl5qa+vnnn+OXaV8rIyNDXV1dwbMbOqOSkpKSkhJ8Tb1WU1NTeXl5ew3UhAkTFixY8Oo+nXWyjEAgCA8PF99FXSgU5ufn29raKreqTiE7O9ve3l7ZVXQCeXl5FhYWmFX0WhUVFaqqqnp6esoupKPj8/lVVVUWFhbKLqSjoygqJyfHzs6uXdZmb2/v4ODw6j6dNQgBAADaBc4RAgAAoyEIAQCA0RCEAADAaAhCAABgNPamTZuUXcNrlJeXP3jwQCQSGRgYiBt5PN7ly5fv379vYmKiq6tLN0ZHR2dJaGlpMTY2JoRQFBUTE3Pt2jUtLS26pUuqr6+Pj48vLy+XnJYmEoliYmJiYmLU1NRMTEzE7cXFxRcuXEhKStLX15ec7/fkyZMLFy40NjaKZ+R2PS0tLQkJCRkZGVLT0h4/fnzp0qX6+nobGxtxY319/aVLl+Li4szMzHR0dMTteXl5Z8+eLSgosLOzY7PZCitekcrKyq5cuRIXF6empib5weHz+efPn289JhkZGefOnausrLSzsxNfn9PS0nLp0qU7d+4YGRl11ZmlDQ0NV69evX37dkNDg+QHR/zNo6mpKTmAdXV1cXFxNTU1ZmZmkuu5ffv2lStX2Gy2VHuXIRQK79y5c/369eLiYltbW8kPTutvHpFI9ODBg+jo6IKCAmtra8n522lpaefOnaupqbG1tW2fK8Gojm3y5MkaGhq6urobN24UNxYVFTk4OIwbN+6TTz4xMTG5e/cu3e7v7+/7PxoaGt9++y3d/vHHHzs7O8+dO9fExOT48eOK3woF2L59u5qamoGBQUBAgLhRIBCMHDlywIABixYtsrS0PHjwIN1+/fp1fX39GTNmzJkzR19f/6+//qLb9+zZY2FhMW/ePAcHh5UrVyphM+QvOjpaXV3d2NjYwMBAsn3t2rX29vaLFy/u3bv33Llz6cb8/Hx7e/sJEybMnj3bxMQkPj6ebr9586aBgcGsWbMGDhw4fPhwgUCg6M2Qv7t373K53Pfff/+jjz4yMDD4+uuv6XYej9evX79hw4Z9/PHHRkZGCQkJdPvp06eNjIzmzp3bu3fvDz74gG5saWkZNmzYwIEDZ82aZWhoeOvWLeVsjDw1NTXp6uoOHz58xowZ9F+LUCikX5o+fbqzs/O8efNMTEyOHTtGN37xxRdqamr6+vqTJ0+WXM+KFSscHBzmzZtnYWHx448/KnozFMLLy8vNzW3GjBnu7u5OTk4VFRV0+48//mhubk5/86xYsYJuHD9+/Lvvvjt9+nQvLy9bW9u8vDy6/dixY8bGxnPnzqVfbZfCOnoQPn/+vLm5ecqUKZJBuGzZMvHf0N69e319faWWysrK4nA4ubm5FEU9efKEy+XSI37mzJnu3buL/0y7kqKiovr6+rCwMMkgPH78uIODQ3NzM0VRDx8+NDExaWxspChq8uTJq1atovts3rx51KhRFEU1NDQYGhrGxsZSFJWbm6uhoZGfn6+ELZGzqqqqsrKy2NhYySDMyspSU1Oj/2Bqa2uNjY2TkpIoilqwYMG0adPoPrt27Ro9ejT9ePjw4WFhYRRFNTU19ezZ8+zZs4reDPkrLy+vrKykH9+8eZPD4fB4PIqiDh486OnpSX+I1q5dS38SRSJRr169Tpw4QVFUdXW1kZFRXFwcRVFnzpzp2bMnn8+nKCosLGzEiBHK2hz5EQqFWVlZ9OOKigpdXd2YmBiKohISEvT09OhvnrNnz4q/eQoKCng83pdffikZhHl5eRoaGvRf4O3bt42MjOiPaheTmZlJPxAKhR4eHtu3b6coqrGx0cjIiP5PEj0OdOaJO1MUNWrUKPorSygUdu/ePTIykqKoyspKLpebmJj49oV19HOEtra2qqqqUo3p6en9+/enH3t6ekZHR0vdLueXX34ZNWoUvYsdFRU1YsQIQ0NDQkhgYGBRUZH4nhVdibm5uba2tlRjenq6q6srPYBubm7V1dW3b98mhBgZGfF4PLpPQ0MDfdDmzp076urqgwcPJoRYW1u7u7tfuHBBodugEPr6+q0Pj2dkZJiamtJ/MLq6uk5OTmfPniWt/tIuXLjQ3NxcX19//fr1oKAgQoiamtqYMWOioqIUuxGKYGRkJD4ZYWFhIRKJBAIBISQqKmrixIkqKiqEkEmTJtHbnpGRkZWVNXbsWEIIl8v18/Oj26OiosaMGaOurk53vnbtmvgPr8tQUVER/0KFgYGBpqZmc3Mz+ec3T0BAQHFxcXJyMiHE0tJSS0tLaiUXL150d3en/wIHDRqkoaFBf1S7GPGF7SoqKubm5vRA3blzR01NzcvLixDSrVs3Dw8P+ptH8ip4c3PzpqYmQkhycnJRUdHo0aMJIQYGBiNGjGiXT19HD0KZbG1tk5KS6Mf0fwcKCwvFr4pEoiNHjsyaNYt+WlBQ0K1bN/qxqqqqqalpQUGBggtWFltb25SUFJFIRAhJS0traWmht33z5s30L9IFBATcvXt3x44d5J8DRQixsrJizkDZ2dmVlpaWlpYSQvh8fkZGBr3tUn9pIpGoqKiI/mOztLSk25kwUJs3bw4ODqbP8BUUFFhZWdHtVlZWDQ0NVVVVhYWFxsbGGhoa4nZ6TCQ7W1paslgsyY9q17N//34DAwP61l3/6ptH6tNnaWnZtf+o7t27d/PmzQ8++ID884+EyPpApaamRkZGTp8+ne5sZmYm3jtqr09fp/z5qM8//3zw4MH0aZvo6GgW6x+/j3Px4sWmpqb333+ffioUCiXPsnI4HPo/tkwwZcqUnTt3BgYGDhw48Ny5c2ZmZvRAXb58OTMzc/Xq1RwOZ/v27VFRUXPmzBEKhZKnnTkcjlAoVF7tCtWrV6+pU6f6+flNnDjx6tWrurq69ECtXLnS29uboihDQ8Po6GhCCH1whsViiceKzWZ37b+o7du3019b9FOhUEjvDhJC6MkOAoFA6o9HPCaSnelB68Jj9ffff2/atOnChQv0fwiEQqHk0axXf/O0/vR14YF69uxZcHDwnj176Nukv/qbp6ioaNy4cV9++aWbm1vrzmw2m95TfEudco+wR48eSUlJQ4cOdXFxOXDgAIvFkpz+d+jQoY8//lj8J2hhYUH/T58QIhKJSktLxf+X7/I0NDTu3r07e/ZsS0tL+nag9F/ehg0btm7dOmfOnBkzZuzcuXPDhg3knwNFCCkuLmbUjyIePnx4x44dJiYmu3btcnJyogfK0dExKSnJy8urT58+P/74o6qqqrW1NX2csLy8nF6wpKSkCw/U999/f+DAgcuXL4uPJ0v+nZSUlNATSi0sLCorK8XfX+IxkexcXl4uFAq76qfv+vXrH330UURERL9+/egWyW2nKOrV3zxSn76SkpKuOlC5ubm+vr6hoaHTpk2jW17xzVNWVubn5zd9+vQlS5aIO5eXl9NHuUg7fvre/jSjAkhNlpEUGhrq7+8vflpeXq6urp6cnCxuuX79On18maKoW7dumZqa0o+7JKnJMpLOnj1rZmZGT1twdHQ8evSouN3KyoqiqMrKSi0trfT0dIqiampqtLW1U1JSFFW4oklNlpGUk5OjpaUl+SdEW758+dixY+nHrq6uR44coShKJBL179//8OHDcq1WWQ4ePGhrayueCULbvn07PbuKoqiwsDA/Pz+Kopqbmy0tLaOjo+nHNjY2ly9fpijq119/9fDwEIlEFEWFh4e7ubkpehsUIjY21tTU9OrVq5KNMTEx4k9cbGysiYkJ/ZgmNVkmJSVFW1u7pqaGoqiMjAwtLa2qqipFla84eXl5Dg4O9BwZsaqqKi0trbS0NIqiamtrtbW16U9fVVVVv379pL75+Xy+iYkJPbOmqanJ3Nz8xo0bb19YR7+O8MSJEz/88ENsbGxubm58fLyenp6dnV1qauratWvT09P37t0bERHxxx9/GBkZ0f33799fVVW1Zs0a8Rrs7OzOnTt3+vTpsrKy0NDQJUuWeHt7K2lr5Oj+/ftfffXVtWvXMjMz09LSKioqXF1dCSFTpkzJyso6derUpk2bDh8+7OzsTAgRCARffPGFSCS6d+/ehg0b5s+fP3ToUE1Nzerq6q1bt7a0tGzYsMHV1fW19y7pjMrLy5ctW/b333+npqbm5eXFxcUNHz6cELJq1aq7d+9euXJl0aJFS5cunTRpEiEkISFhw4YNaWlpP/zww19//XXixAl6/oixsTH9X9R9+/ZlZWX98MMPrad0dXZ37tyZMGGCp6dnUlJSVFRUVFSUm5ubnp6eo6Pjpk2bnj59mpiYuHXr1j179tjb27PZbFVV1TVr1lAU9c0333A4nK+//prFYvXq1WvXrl33799/9uzZxo0bv/32W/ovsCupra3t16+fra1tVVUVPVBcLtfW1tbW1jYqKkr8zbN48eKhQ4cSQm7cuLF169aYmJhnz56lpKTweDwXFxcTE5OHDx8ePHiwtrZ29erVISEhY8aMUfaWtb+RI0dWVFQYGxvTA1VVVdW3b18NDY2amhrxN0/fvn0XLlxICJk0aVJSUpKNjQ3dOTc319PTkz7PtW7dOpFItHXrVi6Xu3HjxrcvrKPffeL27dvi2QqEkCFDhjg7O9fX1//+++9ZWVkWFhYhISGSkwAvXLhgYmLi4eEhuZLGxsbDhw/n5eV5eXnR0426nszMzKtXr4qf9uzZc9iwYYSQ48ePJyYmamlpBQcH9+zZU9zh5s2b169fF4lEQ4cOpZOAEEJR1KlTp+Lj43v27PnRRx91vS93Qkhtbe3x48fFT+nLuQghN27ciI6OFolE/v7+9GQHuvOxY8eys7MtLS2nTZtGzwCk3bp16+LFi4aGhjNmzJBs7zJycnIuXbok2RIUFET/j7OoqOjIkSM8Hm/8+PHiI4GEkIsXL964ccPKymrGjBniOcyVlZW//vprVVVVQEAAPTOwi2lsbAwPD5ds8fb2dnJyIi/55klNTRWfcCWEvPvuu/SwtLS0hIeHZ2RkeHh4BAUFdck7hh4/fry2tlb8tFevXj4+PoQQiqJOnz4dFxcn+c1z5swZyUOmtra2/v7+9OPz58/HxsZaW1vPmDFDU1Pz7Qvr6EEIAAAgV51ysgwAAEB7QRACAACjIQgBAIDREIQAAMBoCEIAAGA0BCEAADAaghAAABgNQQgAAIyGIAQAAEZDEAJ0YgKBoLi4+GV3u6VvFviKxZuamoqLi5lzvy0AmRCEAB3R9u3bzc3NKysrJRuDgoLEP9fZ1NS0YsUKExMTCwsLPT09X1/f7Oxscc81a9ZYW1tra2sbGhqampqGhoaK066lpcXQ0DAsLGzhwoX6+voWFhYJCQkK2y6ADghBCNARTZs2rbKy8siRI+KWvLy8s2fPBgcH009DQkJ+/vnnr7/+Oikp6cKFC6Wlpb6+vuJdw5qamu3btz969Ojx48eLFy/evn37jh07xKuqqqr69ttvc3JyIiMjo6OjJe8PDsBA+NFtgA5qwoQJaWlpKSkp9I0Ivvjiix07dhQUFBgaGsbGxg4ZMuTo0aMhISF056ysrJ49e9J3pW69qlmzZsXFxdF7fi0tLWpqau+8805KSgp9UxsAhsPHAKCD+vTTT/39/enMEwgEhw4dCg4Opm/59Pfff7NYLB0dnStXroj7GxkZie9ZJhKJzp8/Hx8fX1xcTFFUSkoKfX9d8c19xo4dixQEoOGTANBB+fn59ezZ88CBA0OGDImKiiooKJg3bx79UklJCSFk5syZUovU1NQQQhobG4cPH56UlDRq1CgrKytNTU1tbW0ejycQCMT3mDQzM1PgpgB0aAhCgA6KxWLNnTt3/fr1u3btOnjwoJOT0+DBg+mXuFyuiopKbm6ujo5O6wWjoqLu3bt3//79/v370y2rV6+WvG8zvXJ51w/QWWCyDEDHNWvWLBUVlW3btl26dOnTTz8Vp5ePj49QKDx9+rTMpbKzs9lstpubG/1UJBJduHBBQRUDdEIIQoCOy8DAIDg4+LvvvlNXV//oo4/E7QEBAT4+PkuXLv35559LSkrq6uoeP378xRdf3Lp1ixDi6uoqFAo3b97c0NCQn58/Z84cySsrAEAKghCgQ5s7dy5FUZMnT9bX1xc3slisP//8c/z48QsWLDA3N9fT03Nzczt37pyuri4hZOTIkUuXLv3666+1tbWtra3Ly8tXrlypvC0A6Ohw+QRAhxYREREUFHT79u1Bgwa1frWuri4jI4PNZnfr1s3Y2FjypfLy8uzsbEtLS1wmCPBqCEKAjqu5udnLy0tNTS02NlbZtQB0WZg1CtBBjRs37s6dO7W1tTExMcquBaArwx4hQAd1/Pjx5ubmoUOH2tnZKbsWgK4MQQgAAIyGWaMAAMBoCEIAAGA0BCEAADDa/wMX+TDPWtWRtAAAAABJRU5ErkJggg==", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "years = 1971:2024\n", "pop = [\n", " 55928000 56096700 56222900 56235600 56225700 56216100 56189900 56178000 56240100 56329700 56357500 56290700 56315700 56409300 56554000 56683800 56804000 56916400 57076500 57237500 57438700 57584500 57713900 57862100 58024800 58164400 58314200 58474900 58684400 58886100 59113000 59365700 59636700 59950400 60413300 60827000 61319100 61823800 62260500 62759500 63285100 63710500 64138200 64618700 65087000 65605800 65964300 66286700 66627500 66739900 66978000 67636100 68526200 69281400\n", "]\n", "r = 1:10:54 \n", "x = years[r]\n", "y = pop[r]\n", "scatter( x, y/1e6 , title=\"population of UK\", xlabel=\"year\", ylabel=\"/millions\", legend=false)" ] }, { "cell_type": "markdown", "id": "219c9362", "metadata": {}, "source": [ "One way of fitting the data exactly would be to consider the polynomial interpolation of the data (see Chapter 3). \n", "\n", "In the following, we measure time since 1970 to make the numbers smaller and improve the conditioning of the interpolation problem.\n" ] }, { "cell_type": "code", "execution_count": 26, "id": "24aed5c1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "56.14920446749999 - 0.2674673070833299∙x + 0.04895897833333291∙x2 - 0.002763642499999981∙x3 + 6.807416666666631e-5∙x4 - 5.704166666666641e-7∙x5" ], "text/latex": [ "$56.14920446749999 - 0.2674673070833299\\cdot x + 0.04895897833333291\\cdot x^{2} - 0.002763642499999981\\cdot x^{3} + 6.807416666666631e-5\\cdot x^{4} - 5.704166666666641e-7\\cdot x^{5}$" ], "text/plain": [ "Polynomial(56.14920446749999 - 0.2674673070833299*x + 0.04895897833333291*x^2 - 0.002763642499999981*x^3 + 6.807416666666631e-5*x^4 - 5.704166666666641e-7*x^5)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd2AT5f8H8OcymzTpSEdKJ6WMAi0tlCmjbLCypCwZyhRQUVEUFPw5EURBcbFVhiIoU0B2GWWVVSi07NLSlu6VJmnm/f4I3xJLWSXJkybv11/p5e6e9/WwH5+7e55jWJYlAAAAzopDOwAAAABNPNoBAJzFtGnTOBzO4sWLLbK3M2fOLFmyJC4uLj4+3iI7tKxjx44dOnQoOzvbYDBMmzYtIiKCdiKAh0KPEMBG1q5du27duqfd6uzZs8uXL7969Wq15enp6b/88svp06ctlM6SFi9e3KlTpzlz5qxbt+6vv/66e/dujau98MILDMP8+eefD351/vx5hmEaNmxYtWTHjh0Mw3Tv3r3ampmZmU2aNGEYZtSoUTqdzoJHAc4DhRDAru3YsWPy5MnHjx+vttzX17dr165hYWFUUj3aZ599JpVKr169Wl5eXlxc3KtXLys1dPXq1U6dOl27dm3KlClr167l8/lWaggcGy6NAtRJsbGxCQkJtFPUoKCgoLi4uEuXLo0bN7ZqQ5cvX+7du3dOTs7MmTPnz59v1bbAsaEQguNQq9Wpqanu7u4NGzbMysrat29fSUlJ48aNe/fuLRAIHlz/xo0bR44cKSws9PPz69atW1BQkPm3paWlN2/elMvlgYGBV65cOXz4sFqtjoqKio2N5XDuX0opLy+/fv26j49PcHCw+ebp6enFxcXh4eGurq6PyHzjxo3k5OTs7GwOh9O0adPY2Fjzbs2lS5dM1xUzMjLOnj1rWmjapymen59fQECA+Q7Ly8v379+fkZEhEAhatWrVvn17hmHMVzh//jyHw4mKilKr1bt27bp9+7aPj0+fPn3kcvmjf71VTp8+febMGbVaHRQU1LNnT09Pz6qvkpOTb926RQjR6XSmwK6uruHh4U+45yd3+vTp559/vqio6JNPPvn4448tvn9wLiyAo7h48SIhpH///t999x2Pd/9/8po2bXrjxg3zNSsrK8eOHWteIXg83rvvvqvX66vW2bRpEyFk+vTpb7/9tvl/Mp07dy4qKqpabffu3YSQ1157rVqY0aNHE0KOHz9etcTd3V0mk1X9qFKpHuwzhYaGnj59umqdGq98njx5kmXZjRs3EkJmzpxp3ugff/xhXpYIIW3btk1PTzdfRyKReHt7JyUlBQYGVq3m6uq6ffv2x/6Gc3JyunTpYr5/qVS6YsWKqhWqtU4IadOmzcP2FhcXRwhZv379g1+dO3eOEBIWFla15J9//iGEdOvWjWXZhIQEqVTKMMx333332MwAj4V7hOBozpw588EHH3z99dfp6ekXL14cP358WlpaXFycWq2uWmfChAm//fZbdHT07t27b968uWXLlpCQkIULF86aNava3jZs2LBmzZrVq1dnZmYmJSXFxcUdPXp02LBh7DMPwNXpdC4uLt9+++3hw4evX79+/Pjxt956KyMjo3///uXl5aZ1Vq9e/fLLLxNCZsyYse9/HtbB2r1796hRo7Ra7eLFi69evXr69OkRI0YkJSX17NlToVCYr6lSqfr379+rV699+/adOnXq3XffValUr7zySlW7NaqsrOzbt++RI0cGDRp08uTJa9euLVu2jMPhTJo0acOGDaZ1tmzZ8uuvvxJCWrdubUr7448/PuMvqpodO3Y8//zzKpXql19+eeuttyy7c3BStCsxgMWYeoSEkEWLFpkv79u3LyHkxx9/NP145swZQohMJisuLq5a59atWwKBgMfjZWRkmJaYeoSEEPOuklarNdWhPXv2mJbUukdYo/fff58QYt7H+uSTTwghv/zyS7U1q/UIjUZj8+bNCSFr1qypWsdoNPbs2ZMQMm/evKqFEomEEDJt2jTzvQ0aNIgQsnnz5kdkW7JkCSGkXbt25v3mLVu2EEKCgoJ0Op1pyZUrVwghffr0efSRsrXqEXp5efF4PBcXlyfpvwI8IfQIwdFIpdJXX33VfMm7775LCDH9ySaEbN68mRAyefJk8+t4oaGhI0aM0Ov127ZtM9+2SZMm/fr1q/qRz+e/+eab5nuzrAEDBhBCkpKSnnbDa9euXb58OTg4eOTIkVULGYaZOXMm+d8hm3vvvffMfzQ92Jmenv6IJkyH/N5773G53KqFAwcObNas2Z07d2wzkKOkpESv10skktDQUBs0B04ChRAcTVhYWLXnU6Kjowkhly9fNv2YmppKCGnZsmW1DWNiYsxXM2nRokW1h02q7e1Z3Lx5c9KkSRERER4eHgzDMAzTqVMnQkhhYeHT7sqUJyoqyrxKEUJat279YFpXV1fzG4SEENOTMrm5uY9owvR7a9WqlflChmFMS0zfWluXLl2mTp1aWFjYvXv3S5cu2aBFcAZ4ahQcja+vb7UlXl5eXC636j5ZRUVFjauZllS7nfaEq9VCSkpK586dKyoqOnfuHBcX5+npyeFw8vLyvv32W4PB8LR7e9hBeXh4CAQClUplMBiqaqRIJKpW3U3PwbKPvPFpauLBh0tNS2rxCzE1WllZ+eBXpoXmT+eaMAzz008/EUKWLFnSo0ePAwcOYM4aeHYohOBo8vLyqi0pLCw0GAxubm6mH6VSaY2rmZZUrfawvVVbzfTH+sHSZSobj/D555+XlZWtXLlywoQJVQsPHjz47bffPnrDGj3soEpKSrRarUQiqdZTrF0TpaWleXl51S5LmvqR1X5vT8Ld3Z0QkpOT8+BX2dnZhBAPD48HvzLVQpZlly5diloIFoFLo+Bobty4Ua13YnryourPpelD1bC8Kqa7XJGRkeYLL1y4UK2fVG1vfn5+pKYKlJaW9uicFy5cIISMGDHCfOGDqUwjIB/bRzTlSU5O1uv15stNB2V6juYZmXZietSoCvu/h49qUY1MO6zxF2W60PqwfTIM8/PPP0+ZMiU/P79Hjx64RgrPCIUQHI1SqVy6dGnVjyzLLly4kBBSNTn1kCFDCCHLly8vKiqqWu3GjRsbN27k8/mm5yerXL9+fevWrVU/ajSaH374wXxv9evX53A4R48eNe8Cbt68+cHZQavx9vYmhNy5c6dqSVlZ2aJFi6qt5u/vTwjJysp69N4aNWoUHR2dlZVlPp2p0WicN28eIWTo0KGP3vxJmH5v33zzjXlV3rRp09WrV0NDQ013WJ/Kiy++yDDM5s2br127Zr68uLh4+fLlxOyX/CBTLZw8ebKpFlrkli04L6rPrAJYkmn4REBAgIuLy9y5cy9dunTy5EnTU5TNmzevrKysWnP8+PGEkIiIiG3btl26dGn9+vWmeWFmz55dtY5p+ERwcLC7u/vSpUuvXLmSkJDQo0cPQkhcXJx5u/379yeExMbG7tix48CBA3PmzBGJRKax8I8YPjF79mxCSFRU1K5du65evbply5bIyMgGDRoQQgYMGFC12qVLlxiGkclkH3744ZIlS5YtW5aXl8fWNKD+wIEDXC5XJBItWLDg4sWLhw8fNhX18PBwpVJZtZppQH21X53psdIZM2Y84ter0WhM1S4uLu7AgQOXLl369ttvJRKJqZhVrfbkwydYln399dcJIT4+PnPnzt27d29CQsLixYtNv4Tnn3/eaDRWrWk+oL6K0WicPHkyIcTX1/fSpUtP0iLAg1AIwXFUzSyzdOlS8znVoqOjq0YHmmi12tdff938tplAIPjoo4/M//KaCuE777wza9Ys80dLevfuXVpaar63rKws84t4IpHot99+e+w4QqVS2adPH/P/K42NjT106FC1Qsiy7OLFi82fgnnEzDJbtmyp9jBLbGxsdna2+Tq1LoQsy+bn55sGZVbx8vJat26d+TpPVQj1ev3HH39sGtpYhc/nT5kyxbx4sw8phCxqIVgCw+IN9eAoUlJSWrRo0b9//+3bt+fl5R08eLC8vLxJkyadO3eu8VGR7Ozso0ePlpaWent7x8bG+vj4mH+7efPm+Pj4d955Z+HChenp6YmJiZWVlVFRUW3atKn2yCUhRKfTJSQkpKenu7u79+rVy8vLKz8/v6Kiwt/f38XFxbSOaRJOU3enyrlz51JSUliWjYiIaN26tVarzcrKEovFpluP5srLy03DKgICAoRCYUVFxd27d2UymZeXl/lqarU6MTHx1q1bQqGwZcuWUVFR1fZz+/ZthmFCQkLMFyqVyry8PHd392p7q1FqauqZM2dUKlVISEiXLl2qDVbR6XR37twRiUT16tV77K5MKioqTpw4kZGRodfrg4KC2rVrZ7pubE6lUuXm5ta4W6PRePv2bUKIVCqtdhIBngQKITgO80L47HszL4TPvjcAsFt4WAYAAJwaCiEAADg1rmlKXwAHwOFwvLy8unfv3qxZs2ffG5fLDQwM7Nq1K6a1BHBsuEcIAABODZdGAQDAqaEQAgCAU0MhBAAAp4ZCCAAATg2FEAAAnBoKIQAAOLW6WgjLy8tr9/5SmzEajbQjWJ0zHKNpTl7aKazOGU6lMxwj/rnWTl0thNnZ2StWrKCd4lGUSiXtCFbnDMeo0+m0Wi3tFFbnDKfSGY5Rq9XqdDraKazO4qeyrhZCAAAAi0AhBAAAp4ZCCAAATg2FEAAAnBoKIQCAw9qxc1fLLr0Dm7dp0rrz14t/1Ov1tBPZIx7tAAAAYBUzP/5i+cFLpQNXEA9/oqn4LOG7LTsGHdv7D8MwtKPZF/QIAQAc0N27d3/dtKv05dXEw58QQoSSir5zUnn1t2//h3Y0u4NCCADggI4fPy5s3qOtOm1o6YH+ZYnN1OkCVlcW+eLWvYdoR7M7uDQKAOA4DMW5ZUl7NbcuxWTd2i033swtvyUIEBk1DbVZIZq7eUSs4uhUpw+IY7oRDjpC96AQAgDUfSyruX6h/NBmXcYV1/Z93AdMUih13ca9XzDlm6pVeMTQeN//fd3RXXlyd/m+9W59RopbdkU5JCiEAAB1ner8YcWePwjDuHSIcxv5nlAiJYSEERLbPOTfnZ8q+8wiPCEhhJzZpL+R2HPtIYFAoLmeXP7vuvK96916jxS36kqc+/EZFEIAgLrKWFFW8tcP+vwsj8FThY2jNRqN+ROh61ctWfDtDz8t7qLnixmtsnfXzov37xQIBIQQYaNon0bRmmvJZTt+UV88Jhv9PsMX0DsOypg6OlV5WlpafHx8amoq7SAPpVAopFIp7RTW5QzHqNVqWZYVCoW0g1iXM5xKxzvGytSkkg2LRVGd3AdMZHh8QoipEJpKnTm1Wi0SiWrcCWvQl/yxSF+U4z3xU47E3eqhLcHipxJXhwEA6hijqqJ47YLSLcu8xs3xGDzVVAUf4WFVkBDCcHmy0e8JG0Tk/zBDX5xn6aR1AwohAEBdoi/Kzf/ubY5YIn/vZ0H9phbYI8O4D5go6dS/YPE7uqwbFthhXYNCCABQZ+iybxZ8/66kyyCP+NcYgSWv2Es6D/CIf71g6Rxt5lUL7rZOwMMyAAB1g+Z6ctHq+Z5D3xBFdbLG/kUtniMMU/TbXPm7P3Jc3azRhH1CjxAAoA5QXzxWvPYrr3GzrVQFTUSRHcQtY4tWf0mMRuu1Ym9QCAEA7J3y2M7SzUu9p84ThkVauy33F8YSg6F833prN2Q/UAgBAOya6vzh8n3rfaZ9za9X3xbtcbiyVz5QHt9VefWcLZqzAyiEAAD2S3MtuXTTEu9Jn/K8/GzWKNdNJhszq3jtAkNxvs0apQiFEADATmkzrhStme894f/4AWE2blrYMFLa9cWitfNZg+O/yxeFEADAHulyM4tWfSob+a4gtBmVANIewzhCkfLodiqt2xIKIQCA3TGU5Bcum+M+cJJLszbUQjCMx4tTyvdvNCrLqWWwCRRCAAD7wmo1has+lcQOEsd0p5uEJw8St4ot372ObgxrQyEEALAvpX//yJeHSLsOph2EEELc+o5RJx/V3b1NO4gVoRACANgRxaHN2uxbnsPfoh3kHo5YIu05vGz7KtpBrAiFEADAXmiuX1Ds3+g1/iPLziP6jCSd+xtK8ivTztAOYi0ohAAAdsFQkl+8dr5s9Hu2HDL4RDhc9/7jS7cud9ShFCiEAAD0sTpt0a9fSLoPdQmPoZ2lBi7N2/E8fZQndtMOYhUohAAA9JVuXcbzrmcnD8jUyH3gJMXe342VStpBLA+FEACAMnXKCc3Vc57D36Yd5FH49eoLG7dUHv+XdhDLQyEEAKDJUFZU+tf3stHvM0IR7SyPIe06uOLIVse7U4hCCABAD8sW//6Na6cBgvpNaUd5PH5gQ55XvcqLx2kHsTAUQgAAahQJm4he69ZzOO0gT0rS9UVFwt+0U1gYCiEAAB26rBuKg3/LRs8knDrzp1gU0cGoUmhvX6EdxJLqzG8fAMCRsFpN0dqvPAZP4cp8aWd5Ggwj6TJIcXgz7RyWhEIIAEBB2T+rBCHh4lZdaQd5aq7temuuJTvSO3tRCAEAbE2bnqpOOe4xaDLtILXBCEWu7XpXHN1GO4jFoBACANgUq9UU/7HQI/41jlhCO0stSboMUibtM1aqaAexDBRCAACbKtu1WhDSRBT5HO0gtcf18BY2jlYl7aMdxDJQCAEAbEd7O019/rDHi1NoB3lW0tjBFUe2EqORdhALQCEEALARVqctXr/IY/BUjqsb7SzPSlA/nCOSVl47TzuIBaAQAgDYSPnudXz/UFFUJ9pBLEPcupvq3CHaKSwAhRAAwBa0d66pTu/zjH+NdhCLEbXsWnnpBKvV0A7yrFAIAQCsz2gs3fiD+4BJHIkH7SgWw3XzFAQ3UV8+STvIs0IhBACwuoqj2xmhizimG+0gFiaO6aY6k0A7xbNCIQQAsC5DeXH5vvWeQ98kDEM7i4WJojpp0y8ZleW0gzwTFEIAAOsq3bRE0qk/Tx5EO4jlMQIXl/AYdfJR2kGeCQohAIAVVaad0WXflPYYRjuItYhjuqvOHqSd4pmgEAIAWAur05b+/ZPnsGkMX0A7i7UIw2N0+Vn6olzaQWoPhRAAwFrK9/wuqB8ubNySdhArYrg8cVRndV0eUIhCCABgFbrcTOXJPe4DX6UdxOrErev21VEUQgAAqyjd/LNb31FcN0/aQaxOUL8pq9Ppsm7SDlJLKIQAAJanvnDUWF4ieS6OdhCbYBhxq651t1OIQggAYGGsVlO6bYXH0DcIh0s7i42ITPOOsiztILWBQggAYGGKAxuE9ZsJwyJpB7EdvjyY4+qmvZ1GO0ht8Ky367Nnz/75559qtTo6OnrixImEkNOnTx88eL/v/Oqrr3p6Vr96XlZW9tNPP925c6dTp04jR45kHG4iBgBwbIaS/IrEHfIZP9IOYmsuzdtVpp4WhDajHeSpWatH+Oeff/bu3dvV1bV58+anT582LUxMTFy3bl3J/xgMhmpbsSzbu3fv8+fPt2nT5ssvv/z888+tFA8AwEpKNy+RdovnevrSDmJromZt1amnaKeoDav0CJVK5dSpUzdv3tytW/UZZmNiYubPn/+wDQ8cOJCdnX3s2DEej9eiRYs+ffq89957IpHIGiEBACxOc+287u5t2Ssf0g5CgSAk3FBaaCjO58rq2P8EWKVHeOrUKalUKpfL58+fv3z5coVCUfXV1atXP/7442XLlhUWFj64YWJiYpcuXXg8HiEkJibGaDSmpqZaIyEAgMWxBn3Jpp89Bk9leHzaWWjgcFyatq68coZ2jqdmlR7h7du3NRrN+PHjR4wYsW/fvoULF54/f14sFsvl8pYtWwqFwl27ds2ePfvEiRONGjUy3zA3N9fHx8f0mWEYb2/vnJycmJiYB5uoqKjIzs6Oj4+vWjJmzJjevXtb43BqR61Wc7kO/sCYMxyjVqtlWfbBy/gOxhlOpQ2OUZ24nfGUG+tHqFQqqzb0MBqNhmEYvV5PpXVCCBMWVXEhkYnuatVWnupUCgQCU+fqEaxSCHk8Xn5+/qlTp+rXr//WW29FRkZu3Lhx7NixI0eOHDlypGmdUaNGzZ8/f9WqVdUSm59CrVYrFAprbEIkErm5uQ0bdn8e22bNmj1sZSoeEd5hOMMxMgzDsqzDH6YznEprH6NRpSg7uk32+lc8qr9JhmEEAmrzmvIj2udvXSpgCCOw4i/hqU4lh/P4C59WKYSBgYFCobB+/fqEEIZhGjdufOfOnWrrtG3b9p9//qm2MCAg4NixY6bPWq22oKAgICCgxia4XK5UKh0+fLiFo1sOl8t1+P/FdpJjZFnWGQ4Tx/iMFLvXiWK6Cf2CrdfEY3G5XIZhKJ5KrtRdENhQf/uyS9M2VmzF0qfSKvcIO3bs6OHhkZSURAiprKw8c+ZMZGQkIaTqZqFOp9u+fXtUVJTpx/379+fl5RFCBg4ceOjQIdPnbdu2BQUFNWtW957EBQBno8vLVF1IdOs1gnYQ+lyata28nEQ7xdOxSiEUCoXffPPNgAEDXn755ZiYmPbt2w8cOJAQ0qNHjy5dusTHxzdp0kShUMyePdu0/siRI0+ePEkICQ8Pf+WVVzp06DBixIipU6d+/fXXGEcIAPavbMsyt76jOK5utIPQ59K8rfpyHRtEwbBWmxEnMzPz/PnzISEh0dHRpiXl5eVnz54tLS0NCQlp2bJlVZFLS0sLDAyUSqWmH5OTk2/fvt2mTZuHXRc1bRIfH2/Pz5QqFIqqI3JUznCMpodlHP7+mTOcSusdY+XlU6XbV8nf/5nhWnGKkidheliG4j1Ck9zPx3pN+pTvF2Kl/Vv8VFrxtAUHBwcH/+dyuZub24MjCwkhTZs2Nf8xOjq6qnYCANg1o6Hsn188Br1KvQraD5embSovJ1mvEFoc5hoFAKi9iqP/cD19XZq2ph3Ejrg0b1uZWpduE6IQAgDUklGlKN/3p/vASbSD2Bdhwyhd9k2jqoJ2kCeFQggAUEvle/4QR3fiUx0yYYcYvkAQ1qIOTTGDQggAUBv6oruqMwekfUbRDmKPRHXq6igKIQBAbZRt/0XaLZ4rrf4uOSCm0YRpZ4jRSDvIE0EhBAB4atr0VG3mVUnsi7SD2CmuhzdX6qHLuUU7yBNBIQQAeEosW7p9lfsLYxk+5RF79kwY1kJz4yLtFE8EhRAA4Omoko+w2kpxTA2joqGKoGGk5mYK7RRPBIUQAOApsAZ9+c7VHgMnEUwA+UgujaI0Ny8Rq01eZkEohAAAT6HiyDa+X7CwMWa/egyOxIMj9dDlpNMO8ngohAAAT8qoqlAc+Mut/3jaQeoGYcO6cZsQhRAA4Ekp9v8pjurEl2ME/RMRhkVqbqIQAgA4Cn1xnvLUXoygf3LChi3qxG1CFEIAgCdSvnO1pMtArhtG0D8prpuMI5bqcjNoB3kMFEIAgMfTZd/SXD8v7TqYdpA6pk7cJkQhBAB4vLLtK936jmGEItpB6hhhw0jNDXsfTYhCCADwGJVpZ/Ql+a7t+9AOUvcIG0Zpbl6089uEKIQAAI/EsmU7f3XvP4FwuLSj1D1cdy+Oi1iXl0k7yKOgEAIAPIrq9H6GJxBFtKcdpK4SNmxh51dHUQgBAB6K1WnLdq/1GPQqJlSrNWFYC82NC7RTPAoKIQDAQ1Uc2SYIbCSo35R2kDpM2DBSa9+jCVEIAQBqZlRVKBI2ub3wCu0gdRvX05cRCPX5WbSDPBQKIQBAzRT71ouiOmJCtWcnDIu059GEKIQAADUwlBUpk/a5YUI1SxA0bGHPk46iEAIA1KBs52+Sji9w3WS0gzgCO39wFIUQAKA63d3bmrQzku5DaQdxEDyZnDCMviiXdpCaoRACAFRXtn2VtNcIjouYdhDHIQgJ12ZepZ2iZiiEAAD/obmRos+/4/pcHO0gDkUQ3FiXeY12ipqhEAIAmGHZsu0r3V4Yy/D4tKM4FEFIE23GFdopaoZCCABwn/pCImGN4paxtIM4Gn5QY232LWI00A5SAxRCAIB7WIO+bOdv7v3HY0I1i+O4iHmePrq7t2kHqQEKIQDAPcoT//K8/ISNW9IO4pgEIeHaDHt8XgaFEACAEEJYjVqxd717v3G0gzgsfnBjrV0+L4NCCABACCGKhE3CxtH8wIa0gzgsQbCdPi+DQggAQIwVZRVHt7s9P4Z2EEfG9w/VF+WyGjXtINWhEAIAkPLd68RtevK86tEO4sgYLo/vH6q9c4N2kOp4tAMAANCRlZX17+49d3ILnmsU0OLiYb8PltNO5PhM88sIG0bSDvIf6BECgDNasPinVn2HvnZY9Xl26J39O5Zfyr95t4B2KMcnCG5shxOtoRACgNM5ceLEV2v/KXgzQR87pUWzyJbu3AXRX/UbMZZ2LscnCGlihyMoUAgBwOl8v2pdcff3CYdLCPkgb/VC+Wh1UKsSSdDly5dpR3NwPK96rLbSUF5MO8h/oBACgNPJzL5LvOsTQrpVnPHTFf3t2Z0QopXVz8nJoZzM4TGMwP5GE6IQAoDTCQ0OJPk3OYR9P2/tl37j9IRLCBEW3gwKCqIdzfEJQsJ1dnabEIUQAJzO9Fdfke2fF1+0R8WI9knbEkKY9CQfbX54eDjtaI7PDnuEGD4BAE4nJibmy9dHtTr7/fSKGCZvnUfWKb+S1F1/r6OdyykIgptoM64SlrWfmc1RCAHAGY0Mc1cY2r8pixx8N6/l6OFdu3Zl7ObvsmPjSNw5Yom+IJvnG0g7yz0ohADgdIyqCsXBv32mLRgmD6adxRmZOoX2UwhxjxAAnI5i33pxVCc+qiAl/JAm2jt2dJsQhRAAnIuhOF+ZtE/aZxTtIM7r3m1Cu4FCCADOpWzXb5LOA7hunrSDOC9BYEPd3XTWoKcd5B4UQgBwIrrsm5pr56Xd4mkHcWqMQMj19NXnZ9EOcg8KIQA4kdJtK936jmGEItpBnJ3Av4Eu5xbtFPegEAKAs6hMPW0oK3Rt34d2ECD8gAa6bBRCAABbMhrL/lnlMWCCaa5toIvv30CXk047xT0ohADgFLTnD3HEUpfm7WkHAUII4fuHarNu0k5xDwohADg+VqfVJPzl3n887SBwD9fDm0IXIyAAACAASURBVLBGg6KEdhBCUAgBwBkoDv7NDW4iqN+UdhC4j+8faie3CVEIAcDBGRQlFUe2uvR6iXYQ+A/7uU1oxblGb9++vXz58pycnNDQ0DfeeMPLyysvL2/Tpk0XLlxwcXEZMGBAjx49Htzq559/VigUps9hYWFDhgyxXkIAcAbl/651bduL4ymnHQT+gx/QQHPtPO0UhFivR5iSkhITE6NWq7t3767X6wsKCgghixcvPnbsWExMTHBw8LBhw1auXPnghvPnz797966VUgGAs9HlZaovHpP2GkE7CFQn8LeXERRP1CNMS0s7d+5cq1atmjZ90ivsb7755vTp0+fMmWO+8PPPP+dy7z24zOVyV69ePXHixAe3HTduXFRU1BM2BADwCGVbV7j1HskRS8n/LjWBneD5BesLc1i9juHx6SapuUfYt2/fDz/80PR5586dLVq0GD16dGRk5Nq1a59kp1qt9siRI926dVu4cOG8efOuXr03uWpVFSSEFBUVeXl51bj5ihUr/u///m/r1q0syz7FoQAA/JfmerI+P8u14wu0g0ANGB6f51VPn5dJO0hNPUKdTnfw4MH333/f9ONHH30UExPzyy+/rFixYubMmSNGjODzH1O9MzMzjUbjtGnTRo8erVQq27Vrd+DAgZiYmKoVUlNTv//++3379j24ba9evQICAnQ63bvvvrthw4b169fX2IRCocjOzo6Pvz9h4PDhw/v16/fYA7YZtVptXvgdkjMco1arZVnWYDDQDmJdjnkqWbZsy3JR35fVGi0hWsc8xv/SaDQMw+j19jKZ9WMx8mBl+hWBZ72n2uqpTqVAIODxHnPts4avi4qKdDpd/fr1CSF3795NTk7euHFjs2bNPvzww++++y4zMzMsLOzROzVVyunTp48ZM4YQUlZWtnjx4jVr1pi+zcjIiIuLW7hwYdu2bR/cdtWqVaYPEydObNCgwcWLF1u0aPHgamKx2M3Nbfjw4VVLWrdu7eLi8uhgtqTT6ewqjzU4wzFyOByWZYVCIe0g1uWQp1KVtJcrELq16kIYhjjoMVbDMAzDMAKBgHaQJ6UPamQsyHra8/JUp5LDefyjMDUUQpFIRAhRKpWEkB07djAM061bN0KIVColhJSWlj52p/Xq1ePxeFX1slGjRtu3bzd9zsrK6tGjx4wZM2q8O2jO39/fz8/vzp07NRZCLpcrlUqHDRv22DC0cDicJzkBdZqTHCPLss5wmA52jKxOq9jzh9e4OZz/dR0c7xgfxOFwGIapQ4cpCAxTHPzraQNb/FTWsC93d/fQ0NDvv/8+PT19+fLlbdu2Nd3Mu3XrFiFELn/8I8gCgWDAgAGHDh0y/ZiQkGB6+CUvL693796TJk164403zNc/derUxYsXCSFKpVKr1ZoWJiYm3r17NzIy8lkODwCck+LARmGDCEFwY9pB4FH49vHgaM1XThcsWDBq1KiVK1cKBIKqzty2bdv8/PwCAgKeZL9ffPFFr169Tp48WVhYqFarV6xYQQj55JNPrl+/vnz58uXLlxNC/P39jx49SghZuHBhYGDgokWLzp49O2TIkOjoaJ1Od/bs2UWLFgUHB1vmQAHAaRjKiiqObpe/+yPtIPAYXDdPwnAMZUVc95qfnbQN5mFPZmZkZKSkpERERJhuFhJC/vnnHy6XGxcX94S7VqlUx48fd3d3j46ONt01LCgoUJg9wczj8Ux1Ljc3l8fjeXt7E0IyMzOvXr0qEAgiIiIe9lgpISQtLS0+Pj41NfUJw9ieQqEwXUx2YM5wjKaHZRz+HqGDncri37/hefq4xb1ivtDBjrFGpodl6tA9QkJIwc8fSLsNdmna5sk3sfipfOizNCEhISEhIeZL+vfv/1S7FovFPXv2NF/i4+Pj4+Pz4Jp+fn5Vn4ODg9ELBIBa02Xd1Fw95/FhDfN1gB0SBDTQZd96qkJocQ8thHq9PiUl5c6dOxqNxnz50KFDrZ8KAKCWSjcvces3juMiph0Engjfv0Fl2mm6GWouhImJiWPHjr15s4aXRWGQOwDYLdX5w0at2rVNz8evCvaBH9BAcWAD3Qw1F8JXXnmFy+X+/fffzZo1c/i7IwDgGFidtvyfXzxHzTANHIQ6gScP0hfnsTotw6d2a7OGQlhSUnLr1q09e/b07t3b9oEAAGpHcWgTP7ixMAxjruoShsvj+QTocjMEQY1oZahhHKFpQho3NzfbpwEAqB2DoqTi0Bb3fuNoB4GnxvcP1eXQHE1YQyF0dXUdPnz4H3/8Yfs0AAC1U77jN9f2fXne/rSDwFOjPqy+5nuEL7zwwvTp07Ozs/v06ePp6Wn+FZ4aBQB7o828Vpl2Wo4hE3WTIKBB+eVTFAPUXAinT5+el5e3efPmzZs3V/sKT40CgH1h2dLNS9xeGIshE3UU3z9Ud/c2xQA1F8JTp045/HtnAMAxqE7vJwa9a9tetINALXEkHoQQY0Wp6YPt1VwIq80pAwBgn1iNumznb17jP8KQiTqNLw/S5d4RNrSnQmhy5cqV5OTkrKysevXqRUREmN4gAQBgP8r3/uHSpJUgJJx2EHgmPHmwPi9T2JDO0JeaC6FarR43btyGDf8Z7d+rV68NGzZUe3YGAIAWfeFd5ck98plLaQeBZ8WXB+ny79BqveZ3G7777rubNm2aOXPm+fPnc3NzU1JS5s6de+LEiXHjMEYHAOxF6eYl0h7DuG4y2kHgWfHkwfo8aoWwhh6hVqtdvXr1vHnzZsyYYVoil8sjIiJCQ0NHjRqVn5/v6+tr25AAANVVXjmrz8/yGv8R7SBgAXx5sC43k1brNfQICwsLVSpV3759qy3v27cvy7IZGRk2CQYA8FCsQV+6eYnH4KkMj087C1gA19PHqK5gNWoqrddQCD08PHg8XkpKSrXlpiU1vlAQAMCWKg7+zZcHuTSj+RI7sCSG4fn407pNWEMhFIvFzz///LRp07Zs2WI0Gk0LDxw4MHbs2JiYmKoX1gMAUGEoLVAc2uw+aDLtIGBJfHmwPtduCiEhZMmSJXK5fPDgwWKxuH79+qZ3zev1+rVr19o4HwBANaWbl0i6DOJ5+dEOApbEkwfT6hHWPHwiICDg3Llzf/3115EjR0pLS6VSaYcOHUaMGCGRSGycDwDAXOWVs7qcdNmYWbSDgIXx5UGqswepNP3QAfVCoXD06NGjR4+2ZRoAgEe4/4wMvZe4gpXw5ME6SiMoar40CgBghxT7N/L9gl2ataUdBCyP5+NvKMlnDXrbN32/EP7111/BwcE///wzISQmJib4IWwfEQCAEGIoya84shXPyDgqhsvjevjoC3Ns3/T9S6NBQUH9+/dv2LAhIaR3797l5eW2TwMA8DClm36Wdh3Mk8lpBwFr4cuD9Xl3+HJb97juF8L27du3b9/e9HnevHk2zgEA8AjqlOO6gmzZ2Nm0g4AV8eRBurxMEelo43ZxjxAA7B2rrSzbssxzyOuYR8ax8eVBVGYcvd8jvHXr1okTJx67wahRo6yZBwCgurKdq4UNWwgbRdMOAtbFkwfrj2yj0G7Vp8OHD48fP/6xG6AQAoAt6XLS1ecO4V1LzoAvD9LlZxGWtfFrlu8XwuHDh/fq1cuWbQMAPAbLlmxc7NZ/PEfiTjsKWB0jFHFErobSAq6nTd9xdL8QisVisVhsy7YBAB6t4uh2hst3bdOTdhCwEb48WJd3x8aFEA/LAICdMpQXl+9d7zFsmo0vlAFFPHmQPs/WLya83yPcunXrnDlzHrvBpUuXrJkHAOCe0k0/SzrG2X5UGVDElwdrs2/auNH7hdDLy6tly5Y2bh4AoEbqlOO63AzZ6PdpBwGb4smDVGcTbN1o1afOnTt37tzZxs0DADzIWKks3bRE9vIsTK7tbHjyINu/jAn3CAHA7pRtXS6K7CBs0Jx2ELA1rtSTsKxRadM5Pu/3CO/cuZOcnNy0adOGDRvu3btXo9HUuEH//v1tlQ0AnJHmxsXKa+f9Zi6jHQTo4PkG6vLu2PJ/g+4Xwv37948fP/7LL7/84IMPxowZk5+fX+MGLMvaKhsAOB1Wqyn58zvP+NcYoYh2FqCDLw/S52XSKYSDBw9u166dXC4nhBw9elSvp/BSKABwcuW7VgtCm7o0b087CFDD8w2y8Rt67xdCd3d3d/d7czc0btzYliEAAAgh2sxrqrMJmE3NyfH9gjXXk23ZIh6WAQC7wOp1JesXub84GbOpOTmezd9BwatxqUqlWrx48fbt2zMyMiorK82/Ki4utkkwAHAu5bvX8bzriVt1pR0EKON5yg2KElantdngmZoL4bhx4/7+++8ePXoMGTIEE5ACgLVpM66oTu31ff9n2kHADnA4XA8ffXGuzSYVqqEQKpXKTZs2LV68+I033rBNCABwZqxeV7L+W4/417hST9pZwC7wfPwNhTk2K4Q13CPU6XQGg+G5556zTQIAcHJlO37l+4eKojGzFdzD8/bXF+TYrLkaCqGHh0fHjh0PHTpksxAA4LS06anqcwkeg6fQDgJ2hOftry+8a7vmaly6Zs2a+Ph4tVrdq1cvb29v868aNGhgk2AA4PhYrab4j4UeQ97gSDxoZwE7wvP2r0xNsl1zD/tCIpHMmTPnwRczYWYZALCUsu0rBfWbilp0pB0E7AvPx19faLtLozUXwsGDB+fk5Hz22WdhYWF8Pt9maQDAeVSmnVannpK/hydFoTquTG4oK2INeob70N6aBdXQRkFBwYULF7Zs2TJo0CAbJAAAJ2RUlpf8+Z1s9PsckYR2FrA7DJfHdZMZivN4PgE2aK6Gh2XEYjGXy61Xr54NmgcA51SyfpG4TU9hoyjaQcBO8bxtd3W0hkLo6uo6YsSIdevW2SYBADgb5fFd+tICt+fH0A4C9suWIyhqvvzauXPn2bNnX79+vXfv3hLJfy5cvPrqqzYJBgCOSV+YU7bzN583Ftjm9g/UUVzvevoiG42gqPkf4scff1xUVLRnz549e/ZU+wqFEABqz2goXrvALe5lfr36tKOAXeN5+2tuXLRRWzUuvXr1qtFotE0CAHAeZbvWcCTukudeoB0E7B3PJ0BfkG2jtsx/SEhIaNeunVgsrnoxIQCApWiunVedOSCf8SNhGNpZwN7xvPwMJfnEaCQcq78u8D8NTJgwwcfHZ9CgQb/++mtBQYG12wYA52GsKC3+/RvZyHcxiQw8CYYv4Li660ttUYn+UwjPnj3722+/ubm5TZ8+3c/Pr3Xr1p988klaWpoNcgCAI2PZ4rULXDs8L2zcknYUqDNM76CwQUP/KYSenp5Dhw5ds2ZNYWHh4cOHO3bsuGrVqmbNmoWFhb311luJiYm4cQgAtVC+dz1r0Ln1Hkk7CNQlNhtBUfO1Vx6P16lTp8WLF2dmZiYlJY0YMeLgwYOdO3cODAycPHnyhQsXnmTXBw8enDRp0ujRo7/55puqhadOnZo4ceLYsWMPHjxY41b5+fkzZ8586aWXfvrpJ4PBUItDAgC7orl1SXlsh2zMLBvc7AFHwrPVCIrH/LtkGKZNmzZz585NSUlJT0//5JNPcnJytm/f/tj9rly5cuTIkREREXFxcfn5+aaFly9f7tWrV3R0dJcuXeLj4xMTE6ttZTQae/bsWVhYOGzYsF9//XX27Nm1OyoAsBNGlaJ43QLP4W9y3b1oZ4E6xmY9QqYWb5MwGo2cR/6fXXl5eUBAwL59+9q3b2++fMqUKXw+/4cffiCEfPHFF+fOndu8ebP5Crt27Xrttddu3brF4XBSUlI6deqUk5Pj6ur6YBNpaWnx8fGpqalPG95mFAqFVCqlncK6nOEYtVoty7JCoZB2EOuy1qlk2cLlH/EDwtz7jbP8zp+SM/xz1Wg0DMMIBALaQSxDl5NevGa+fNayasstfiprc6Xi0VWQEJKUlOTt7c3hcD744IMFCxYUFhaalp88ebJLly6mz7GxsadOnaq24alTpzp37mzaf2RkJJfLtedSBwCPVr57LavXuce9TDsI1Ek873r64lxi/Xf/WWWKo4yMDIVC8d57740bNy4xMbFVq1aXLl1yc3PLzc318rp3ecTb2zsvL69a5zI3N1cmk1X96O3tffduzReIFQpFZmZm9+7dq5ZMnDhxwIAB1jic2lEqlYyjD5ZyhmM09Qh1Oh3tINZljVOpv3pWdWK3ZOpXFSq1ZfdcO87wz9XBeoSEEEYoLs/J5Pz3uvpTnUoXFxce7zGVziqFUCgUFhUVrV+/3t/ff+zYsS1btty4cePEiRNFIpFGozGtU1lZKRQKq3UuzVcwrSMWi2tswtXV1dvb+4MPPqhaEh4e/rCVqTAYDHaVxxqc4Rh5PJ4zXBq1+KnUF+cpti31fPlDodwWr9F5Es7wz5XL5TpYIVT7BPCVJcJ6QeYLn+pUPvYSJrFSIQwKChIKhVUvcgoNDc3NzSWEBAYGZmZmmhZmZGQEBQVV2zAwMDAhIcH0Wa1W5+fnBwYG1tgEh8MRi8W9evWyRn6L4HA4T3IC6jQnOUaWZZ3hMC14jKxOW/LbXGmfUaKGkZba57Nzkn+uDMM40mHyfPyNxbkcTrT5QoufSqv8vjp27Ojt7X3kyBFCiEKhOHnyZKtWrQghQ4YM+f33302DItauXRsfH29af9OmTVlZWYSQF1988fDhw6ZiuXHjxkaNGoWHh1sjIQBYT8lfP/DlwZKO/WgHgTqP611PX2j1ERRW6RHyeLwff/xx6NChHTp0uHDhQr9+/eLi4gghEyZM2LBhQ0xMjIuLi1KpXLbs3rNAU6dOXbFiRWBgYFhY2PTp09u1axcVFXXu3Ln169dbIx4AWE/FkW267Fu+b39LOwg4Ar53gCr5iLVbsdb7wAYNGtSlS5eUlJSQkJD69eubFkokksTExHPnzun1+tatW1fdwExOTq56Rubzzz8fP358RkZGdHS0hwfmJASoSzTXziv2/+nz1rcM33FuUwFFPB9bvKfeii/GlMlksbGx1RZyOJzWrVtXW+jv72/+Y2hoaGhoqPWCAYA16Ityi9d9LRszi+flRzsLOAiut7++8C5hWau+scRx7qkCAEXGSlXRio/d+o4WNoqinQUcB8dFzPAFBkWpdVux6t4BwCkYjcVr5gsbR7s+F0c7CjganrfVr46iEALAsyrdtoIY9B6DXqUdBByQDW4TohACwDNRntxdmZoke+VDwuHSzgIOiOftb7Dy1NsohABQe5VpZ8p3rfZ+9TOOWEI7CzgmXBoFAPuly7pZ/Ps3XuM+4vnYyzxq4HhwaRQA7JShtLBw1aeew6YJQpvRzgKOjCfz0xfnWbUJFEIAeGrGSmXhsjnSroNFLTrSzgIOjiNxZ/U6VmPFd5igEALA02EN+qJfPncJj5HEDqKdBZwCz9PXqp1CFEIAeBpGY/Harziubu4DJtKOAs6CK5MbinOtt38UQgB4Yixb8tcPRpVCNuo9q055BWCOJ5Pri9AjBAA7UPbPKt3ddO8JHzM8Pu0s4ES4MrmhJN96+0chBIAnUr7nj8q0M96vfs4IRbSzgHPhyeS4RwgAFGi1Wp1OZ/pckbhDdXq/99R5HLGUbipwQlyZr6HYij1CK76GCQDqqIMJh16f+XGxSksI6+smWvfGMN8bJ3ynfcN186QdDZwRT+ant+bDMiiEAPAfu3bvGTPrq+KRvxFZICEk9s6fhqNrMwe+Uc/Tl3Y0cFIciTur07IatZUuy+PSKAD8x/Q5nxePWW2qgkNLD8xS/jvCf87UL3+knQucGk9mxaGETlEIWYPeUFpIOwVAHcCybImykrj7EUKGlh54P3fNsNAvr9frcLegiHY0cGpcmdyAQvgsdDnphSv+j3YKgDqAYRhiNJD/VcERoV/eFAYQQkwLAWix6oOjTnGPUBAQZigrMhTnc2W4yQHwGPUD/bun/zZDk3C/Ct48GdE0nHYucGpcmR96hM+Gw3Fp1ladeop2DoA64PeJce8Wbhxu7H+T70eMem7KTr8tby5dOJd2LnBqVu0ROkchJETUvG3lpZO0UwDYO8WBjdLbyf7TF7UqPhTyY2z9n7q9VHkw+fDusLAw2tHAqVl1KKFTXBolhLiEty5Z/631nr4FqPNYtnTbCs2Ni77TvuFI3P/6bRntQAD38WRyfQl6hM+GEYoEIeGVV8/TDgJgl4zGkj+/1WVe83njK47EnXYagOo4Eg9Wq7HSWwmdpRASQlyat6u8jKujANWxGrVy3XyDotR76pccF1facQBqZr2hhE5UCEURHdSXkwjL0g4CYEcM5cX5P7zHkXp6Tfg/hi+gHQfgobie1noHhRMVQq7Mlyv10GZcpR0EwF7o7t7O/+5tUUR70YtTGa6zPDEAdZT1Hhx1okJI7l0dxSAKAEII0Vw7X/DTLPcXxrn1HU07C8DjcWW+VhpK6FyFUNS8nRq3CQEIUR7fVbxugdf4j8Qx3WhnAXgiPJmfld5T71wXQwQh4YbyYkwxA86MNehLN/2svXXZ582FPG9/2nEAnhRX5muwzggK5+oRYooZcHJGZXnhkg8NpYU+by9CFYS6hYt7hJYiat4WtwnBOemybuYvnCYICfee9CmGSUCdw5V4sNpKVltp8T07XSEUNonR3LpspVGZAHZLeXJPwdLZ7i9Oce8/njAM7TgAT49huJ5W6RQ61z1CQgjHRSys37Ty6nlRi+doZwGwBVajLvnrB132Ld9pX/PkQbTjANQez/RWQleZZXfrdD1CgilmwJno7t7OW/QmwxP4vvM9qiDUdVyZr94KU287XY+QECKK6lS+53cPvY7h8WlnAbAi1en9ZdtXuQ+aJI7pTjsLgAXwPH0NJXkW78A5YyHkunvx5cGaq+dcmrejnQXAKozK8pKNP+gLs32mfc3zDaQdB8AyuF5+2guJFp8J0BkvjRJCRK26qs4dpp0CwCoqr5zN+/o1rrvMd/piVEFwJDxPuTXeSuiMPUJCiDi6c/mOX1ltJSNwoZ0FwGJYnbbsn1XqSydko98XNmxBOw6AhVlpKKGT9gg5EndB/fDK1NO0gwBYjObWpbwFU9lKlfz9paiC4JC4Ug9WqyY6jWV366Q9QkKIqGWs6twhUXRn2kEAnpWxUln2zy+Vl095xL8uiuxAOw6A1TAM19PXUFJAZN4W3KuT9ggJIaKoTprrF4yVStpBAJ5JZWpS3ldTWW2l/P0lqILg8HievmxZgYX3adnd1SEcF7GwYWRlyglxm560swDUhqGsqHTzUt3ddNno94RhkbTjANgC18vP4s/LOG+PkJiujp7Hs6NQ97AGveLg33kLpvL9guTv/YwqCM4DPUILE0V0KN34g7GijCNxp50F4ElprieXblrCcZP5vrkQk8WAs+HK5GzGNcvu06kLISMQujRtrb54zPW5ONpZAB5PX3i3bPsKXc5tj8FTXJq1pR0HgAKet7+xvNiy+3TqS6OEEFErXB2FOsCoLC/dsjT/27cEwU3ks5ahCoLTEgQ3Fo9637L7dPZC6NK0jS77lqGsiHYQgJqxBn3F4a258yaxOq181jJpz+GYIxecHCOSWHaHTn1plBDC8PiiiPbq5KOS2EG0swD8B2vQq5L2le9dLwhu4vvWIp5PAO1EAI7J2QshIUTcunvp9lUohGBHjAblmYOKPb/zfAK8xn4oCAmnHQjAkaEQEmGjaFat1N65JghqTDsLOD2jQXX2UPneP7gePrLR7wlCm9MOBOD4UAgJYRjXDn2Vx/8VDEchBGpYnVaVtE9x8G+up7fn8LcwWSiAzaAQEkKIuG3vvPmT3AdO4riIaWcBp8Nq1MqTexQH/+LJg2WjZ6AXCGBjKISEEMJ18xQ2ilafO4QBhWBLhtKCiqPblSf3uITHeE/+gu8fSjsRgDNCIbzHtcPz5Tt/QyEE29BmXq04tLny6nlxm56+73zP8/KjnQjAeaEQ3uPSpFXpXz9o71wXBDWinQUcFmvQqy8kVhzdbiwvlnQZ6DHsLVyNB6AOhfB/GMa1fV/liX9RCMEaDCX5yuP/Kk/t5vnVl3YbIopoTzjOPp0FgJ2wViFcuXLljRs3TJ+9vb1nzJhBCNm/f//+/fvNV/v000+FQqH5knnz5pWVlZk+h4eHjx071koJHyRu1ztv/mSPgZMYochmjYKDMxorr5xRnvhXc+uyuHUPnze+5vkG0s4EAP9hrUK4YcOGBg0axMTEEELc3e+928HT07NBgwamz3v37k1NTZ0/f361DZcsWTJ27NjAwEBCiJ+fTW+ccN1kwoaRqnOHXDs8b8t2wSEZivOVp/YoT+3heni7tn9eNmYWIxA+fjMAsDkrXhrt0aPHsGHDzJfExMSYSiMhZM2aNRMmTKhxw/j4+KioKOsFewTXDnHl/65BIYRHUKlUGzb+dfbytQaBfoMH9q9fv775t6xOq045rkrap71zXRzTzXvyF/x69WveEQDYBysWwt9///3w4cNNmjSZOHGiWPyfJwKuXbuWlJT0999/17jhokWL3N3dW7VqNXr0aB7PpncxXcJjSv/6QZd1kx8YZst2oa44febMiy9PLoocUunfkblwd/6Kke9OHDnz7TcIIdrbacqkferko4LgxuK2vbwmfMzwBbTzAsDjMSzLWmO/c+fOlUgkQqFww4YNhYWFSUlJItH9G28zZ868fv365s2bH9zwnXfeadSokU6nW7FiRXBw8I4dOxiGeXC1pKSk7t27t217/2U0L7/88pAhQ549eeXhTcaSAvGgKc+4n4qKConEwlOk2xtnOEatVsuyrOlOtk6ni+zQLXv8ZiL73+twjfrIX/v9MaG3LPcqYRhhy6786FiOm4xm4lpxhlPpDMeo0WgYhhEIHPz/wJ7qVLq4uDy2Q2WtQlhFq9WGh4fPnTv3pZdeMi3R6/XBwcHLly/v16/fIzYsLCwMDg5OTExs1arVg9+mpqbGxcWtXLmyaklERIRF7ikaleW5cyfIZy3nunk+y34U0PgJ2gAAIABJREFUCoVUKn32PPbMGY7RvBAmJiYO+mJd0ZAfCCEeBkW/smODSxNCVenpjOSFt2fX6amxneFUOsMxOkkhtPiptPqFR4FAEBYWlpubW7Vk586dLMv27dv30Rt6e3v7+PiYb2iOYRixWNyzZ09LZiWEEMJxdRO37l5xZKt7v3EW3znUafn5+cS93oCyI4NKD7dXXk6QtvrJZ8jhcpdeqd+/WJerIICTs8pIJo1GU1BQYPqckpJy4sQJ82uYq1atGjdunHlfNSEhISkpiRBSVlamUChMC3ft2pWfnx8dHW2NhI8m7RqvPPGvsVJl+6bBPrEGfWVqUos7SUd9Tw0pSdjp1qlt+K+vB71/QNrGkHejWaP6tAMCQO1ZpUdYVlbWoEGDRo0aCQSCtLS0Dz74oGPHjqav8vLydu/evWDBAvP1lyxZEhgY2LZt28uXL/ft2zc8PFyn02VkZCxbtszf398aCR+NK/N1adpaeWyntMdQ27cOdsRo1N28qD53WJt6ii8Pkrfq2mt9YlKPONazzb0VVKVeCV+/tnMD1ZQA8EysUgh9fX3z8vKuX7+u1+sbNWpUNY6QECKTyfLz8z08PMzXX7VqFYfDIYQ899xzmZmZ169fFwgEjRs3Nn++xsakPYYVLp0tiR3E8Pi0MgA1LKu9nao6f0SdfITj5i2I6iR/4WWuhw8hZMOGFv1fGptzKqTUr5WkItv16v6fFnxWNToWAOoia90jdHV1rfGqJp/Pr1YFCSHmtz09PDzatGlDaOPXq88PCFOd3o8xhU5Fm3lNff6w6vwRjshV1CrW582FRjdvlmW5/5v/KCQk5MKxg6dOnUpLSwsI6PHccx85/IOIAA4Pc40+lLTH0JI/v3Nt35fUNH4DHInu7m3VuUPq84cJhytuGes9ZS7fL9j0lVarrbYywzDt27dv3769zWMCgFWgED6UMCyS4+qmvpgoiupMOwtYhT4/S3X+sPr8YVarEbWM9Ro7BxMpADghFMJHkfYYpti3HoXQwRhK8lXnj6jOJRgVpaLoLp4j3hGENEG/H8BpoRA+iiiiffnOXzXXkoWNKYziAMsyVpSpko+ozx3S5d0RRXXyGPiqsGEL1D8AQCF8JIaR9hhevnutDwphncVq1OqUE6pzCdr0NJdmbaU9hwubtGK4+JcPAPfgz8FjiFt3VxzapL54XNTiOdpZ4GkYDZVXz6nOHKy8nCRo0Fwc091r7GxG4EI7FgDYHRTCx2EY9/4TSjf97NK8LboRdYL2znXVmQPq84e5Mj9x6x4eg6dyXN1ohwIA+4W/7I/nEh7D8/JTnvhX0qk/7SzwUIayItWZA8qk/cSgF7fu7vPmQp43hWmJAKDOQSF8Iu4DJhYu/VDcugfHRfz4tcGG7r8IN/OaKKqTbMRbgtDmtEMBQF2CQvhE+P6hLk3bKA5sdH9hLO0scI/2zjXVqb2q80fwIlwAeBYohE/KLe6VvAVTJR37cT28aWdxakZluerMQeWpPay2Utyut/z9JVx3L9qhAKAOQyF8Ulx3L8lzL5TvWu058l3aWZwSy2puXFSe+Lcy7YxLRDuPwa8JwyIwChAAnh0K4VOQ9hyWO3e8LvsWPwBvG7AdY0WZMmmf8sS/DI/v2uF5j6FvcESY5xoALAaF8CkwQpFb3zElf//o++ZC9EVsQHPrsvLYjsq006LIjrJR7wnq4y3wAGB5KIRPx7XD86pzCRWHt0i6DqadxWEZK1WqMweVx3awRqOk4wseQ15HFxAArAeF8CkxjOeId/K/fculeTueTwDtNI5Gl5epPPqP6twhYZOWHvGvCcMi0fMGAGtDIXxqPO96br1Hlvz5nc8bC/Bn2jKMRvWlkxWJ2/W5ma4dnpfPXIoHQQHAZlAIa0PSZaAq+WjF0e2SLgNpZ6nbjOoK5YndysR/OO5eks4DRFGdMI8dANgY/ujUCsPIRr6T/910l2ZtMI9X7egLsiuObledOSBs3FL28ixB/aa0EwGAk0IhrCWeT4C0x7CSDYt9XpuPC6RPgWUrr56rOLxFl33L9bk4+awVXDdP2pkAwKmhENaetOtg9cVEXCCtRqlUFhQUBAUFcblc8+WsTqs6e7Di0BbC5UpiX/Sa8DHD49MKCQBQBYXwGXA4stEzCxa/ww9sKGyAiZ7JzZs3R095+1Z+KeMmN+ZdHzl4wFefzhEKhcaK0orEHcpjO/nBjT0GTxXiLccAYE9QCJ8Jz7ue56gZxau/9J2+2MnnIC0uLu7ywpCcIT+T+q0JIYQ1Lju4WD1hwvz+bdQXjoqiu/hM+5rnG0g7JgBAdSiEz8olPEYS+2LRL5/5TPvGmd9+8NOKX/LbT75XBQl5TnlpUsOKlsUFFQw/4MNVHIk73XgAAA/DoR3AEUi7xfO8/Us2fk87CE3Hz6boG3TgEcPAsiO7bk6fe3fJPre2PXPbXBAHowoCgD1DIbQEhvEcMV2Xk15xeCvtKNR4ubpMqth/9Nqk0cX/fuv7Uo9GP//h2cegVYrFeJUxANg1XBq1DEYg9JrwfwXfvc3zC3Zp0op2HJsylBVVHNn6hXfe/qLiydGfXhQ1uveFVsW/ltC+/Vyq6QAAHgM9QovhyeSysXOK1y7QXE+mncVGDHdvF//+dd5XU1i9PmDW0j8LSMa/S0nhbaLXkhvHvZb0+2rO++gRAoCdQ4/QkoQNmnuNn1P0yxdeL88i9cJox7Ealq28ckaRsFmXmyGNHeQxeKrp7RD7tm1c+8efK/74IPduTmRE88//XNq8OUaVAIC9Y1iWpZ2hNtLS0uLj41NTU2kHqYE2/XLRL1+4xL/hGd2RdhYLY/U69fnDioN/Ew5X0vEFQ3g7N5mDz46t1WpZlhUKhbSDWJdCoZBKpbRTWJczHKNGo2EYRiBw8MfXLX4q0SO0PEFoc9m4OYWrPhOLxcLGLWnHsQxDebHy2A7l8X/5wU08Bk8VNooihCgUCtq5AACeFQqhVQgbNBe/NKNozVeyl952ad6edpxnos28VnF4a2XaaXFMN583v8FbGAHAwaAQWgsvJNx70idFv851zbzm1ncMYZjk5OSjx06wLNu5Y4eWLe29p8jqdeoLiRVHtxsVpZLO/T2Gvs5xcaUdCgDA8lAIrUgQEi6f8UPR6nkFS2e/fSxn783S4vA4QhjZ+s/bBbhuXrfKPi/lG4rzK47vVJ3ayw9oIO0xTBTRHq/XAAAHhkJoXRyJh8/UL7fNevVNz9JLI78sFDUihBR2HHvgwLczP/7i23mf0Q5oxmisTEtSntitSU91bdMTV0EBwElgHKH1cbhv7Ej+NOTN1bc/e63wbz6rJ4RUdpu2cesO2snu0RfmlO349e6nY8r3/+US+Vy9j9e6D3oVVRAAnAR6hLagZcm/Hp1TxY0+vrtiRPG+z+pN2C9tq6P9fyFGVYX6YqLqzAF9fpa4dQ+f1+bz5EF0IwEA2B4KoS0IGEL02gyB3/iQj7oqzn6cu/Llop1LXOkUQlarUV8+qT6boLmRIgxvJYkd7NKsDcPFvwQAcFL482cLo4a++P2BReo+swghh6QxiZKoySdnrO7sW/LHQtdO/QTBTWyQwagsr7x8Sn35lObqeUFoU3GrrrIxMxmhyAZNAwDYMxRCW/h8zszr46ceWTm4OLwfYRiPKzuzQmXBC1drzyUUr/mKcRFLOvUTt+rKCFws3LDRoM26qbl+ofLyKd3d28LGLUURHTyHvclxdbNwQwAAdRYKoS3w+fxNa1devHjxyLHjhLCd3/4sKiqKECLs/v/t3XtUE1caAPBLAoTwJjyToICACBYQrFbcCiiCIuvaKupRcBVBqK5W22qPS7Xd9qx6FnVXV1TkgJRt8VHE+uCN8qoiCEEpyEMEEwUkvMIzkOfsH3M6JwuU9ZF0GvP9/pr57mTy3WTIZebemRtqtHjNWFP1yN2sgZvn9WZ60Zw9ac6ebzJQBRONSjpaRa2PRE9qxU/rqWaWNGdPo6ANNCcPLW0d5dUJAADeEtAQ/nY8PDw8PDzGR7W09GbN1Zs1VzbYJ2rkjDXXDOZfQAjRnOfo2NhpM6ypDCuqmTXV2GziDuXCIdmQQD40IBvolnY+l3RyJR1c2ZBAx2a6rsNsg4XBjPB9cPIHAABTg4bw94JqzNCfH6g/PxAhJO1uF7XUSrvahM8eywR8aV8XJhJq6fzP3feYaEyLRqcYmVGNTKjG5tpWtvrvBuiwHLQtWHD/OwAAvDxoCH+PtC3Z466OYhIxJhErRrRoejDUEwAA3hz8kqoHLR3dcWeEAAAAlAKeLAMAAECjQUOoEjKZrKCggOwsVK64uHh0dJTsLFSrpaWlsbGR7CxUSywWFxYWkp2FyhUWFopEIrKzUK2mpqYnT56QnYVqjY6OFhUVKXef0BCqRHt7++7du8nOQuW++uqrR48ekZ2FamVkZFy8eJHsLFSrtbX1888/JzsLldu/f39LSwvZWajWpUuXrly5QnYWqtXQ0PDll18qd5/QEAIwFQzDyE4BgFcAR+xrgIYQAACARoOGEAAAgEbTUtPz6MrKyoCAgPfee4/sRCYnEokqKyvff/99shNRrfv377u6uhoZGZGdiAo9ffpUJpM5OTmRnYgKCYXCmpoaHx8fshNRrXv37nl4eBgYGJCdiAq1tLRQKBQHBweyE1GhoaGh+vr6l//x//DDD3fs2DH1NuraEEql0u+++27atN/p/HkYhvF4PHt7e7ITUa1nz56x2WwqlUp2Iio0MDAgk8kYDAbZiaiQhhyuXC7Xzs5O661+7lJfXx+FQjE1NSU7ERWSyWRtbW12dnYvub2Dg4Ojo+PU26hrQwgAAAAoBfQRAgAA0GjQEAIAANBo0BACAADQaNAQAgAA0GjUv/3tb2Tn8BYqLS0tLCyk0WiWlpZk56JMfD6/qqqKQqGYmJgQQYlEkpubW15ebm5ubmys9vMA19TUFBQU8Hg8JpNJo9GIOI/Hu379emdnp4ODA4Wixv9BYhjW0NBQVFTE4XAQQjY2NkTR8PDwjRs3ampqbG1t6XQ6eTkq088///zkyZPp06cTkerq6tzcXLFYbGtrS2Jib47P55eXl7f+wszMjPjWmpubb9682dvb6+Dg8BYMlB0cHMzKyqqsrMQwjDhilXm4YkDZoqOjXVxcYmJirKysUlNTyU5HaZYtW0an0w0MDP75z38SQYlE4ufn5+Pjs3XrVgaDcffuXRIzfHPbt293cnIKCwsLDAy0tLSsra3F47du3WIwGJGRkfPmzVu+fLlMJiM3zzfR2dnp7Oy8cePGzZs3W1tb79q1C4/39vY6OzuvWLFi/fr1TCaTy+WSmqZytLa2mpiYODg4EJHjx4+z2eyYmBh7e/uDBw+SmNubu3TpEoPBWPqLhw8f4vFr166Zm5tv27bN09Nz3bp15Cb55jgcjrW19bJlyzZv3uzp6YkHlXu4QkOoZE1NTQYGBl1dXRiG5ebm2traSiQSspNSjqdPn0okkuDgYMWG8OrVqy4uLiKRCMOw48ePBwQEkJegErS0tMjlcnx5y5Yt4eHh+LKPj8+ZM2cwDBMKhfb29nl5eaSlqFSPHj3S0tISCAQYhh0+fDg4OBiPR0VF7dy5k9TUlEAulwcFBX366adEQzg0NGRsbMzhcDAMa2lpodPpfD6f1BzfyKVLlwIDA8cF5XK5q6vrhQsXMAwbGBiwtLSsqKggIzvlkEqlzs7O+F+fokOHDinxcFXjKzy/T1lZWb6+vvgV0aVLlw4NDT18+JDspJTD3t5eW3v8TM6ZmZkrV67U1dVFCIWGhhYWFgqFQjKyU44ZM2YQ15FYLJZYLEYI9fT03Lt3LzQ0FCFEp9NXrFiRmZlJZpbKIxQKjYyM8CvAmZmZeB0RQqGhoW9BHRMTE+3t7ZcsWUJESktLzc3Nvb29EUIzZsyYPXt2fn4+eQkqwfDwcF5eXlVVlUQiwSMtLS3Nzc0ffPABQsjY2DgoKEitv0oOh9Pb2xsWFlZaWlpTU0PElXu4wgz1Stbe3k50PFCpVBsbm/b29nfffZfcrFSnvb3d3d0dX2axWAihjo6Ot+CBZC9evEhKSvruu+8QQh0dHbq6ukR3L5vNxnvX1NrmzZt5PF5ra+uPP/6I96+0t7ez2Wy8lM1md3R0YBimvt1LHR0dJ06cKCsrKysrI4KKf54IITab3d7eTkZ2SjMyMnL69OmGhgYajZadnT19+vSOjg4Gg0H0mal7HVtaWoyMjPz9/Z2dnR8+fOjm5paRkUGhUJR7uMIZoZJJpVLFL0NbW1sqlZKYj6rJZDJi5AiFQtHS0noL6jswMLBq1aqIiIigoCD0v3VECFGp1LegjjExMZ999pmPj8+BAwfwkwnFalKpVLlcLpfLSc3xjWzfvv3QoUNmZmaKQZlM9jb9eYaGhtbU1Ny4caOxsdHNzW3//v1oQh3V/XAdHR3l8XinTp26fPnygwcPOBzOtWvXkLIPV2gIlYzFYnV1dRGrfD4fP096WzGZTKK+3d3dcrlc3es7PDwcEhIyb968I0eO4BEbG5uxsbHBwUF8lc/nM5lM8hJUjoULF65cufLixYtPnz4tLi5G//tV8vl8a2tr9X2KbF1dXVFRUV5eXkxMTHx8fE9PT0xMTH9/v2IdEUKdnZ1qfbgSXxCVSl23bh3eC2NjYyMQCIjGT90PVxaLpaOjs3DhQoSQvr7+/Pnza2trkbIPV2gIlczf37+0tHR0dBQhxOFwZDLZnDlzyE5Khfz9/QsKCjAMQwjl5eV5e3ur9R0UQqHwT3/6k4uLy6lTp4h/q21sbGbNmoV3Jsnl8lu3bi1evJjUNJVmZGREKBTiX5m/v39eXh4ez8/P9/f3JzOzN2Nra5ucnIyPpZwzZw6dTl+6dCmNRvPx8eFyuTweDyHU19fH4XD8/PzITlY5OBwOPgmBs7OzlZVVUVERQkgqlRYWFqr14bpgwQJdXV38K0MIPXnyBK/m4sWLlXi4wkO3lS8oKAjDsJCQkLNnz27atOnAgQNkZ6Qc33777b1793Jycmxtbd3d3SMjI+fPny8UCj09PRcsWODh4REXF3fu3LnVq1eTnenri46OTktL27hxI37Vxc7OLjY2FiH0/fff79u3b+/evffv33/06FF1dTU+PkgdZWRkpKene3p6SiSS9PT0adOmZWZmUigUHo/n7e0dERFhaGj4r3/9q6Sk5O34Hy4rK2vXrl2tra346scff/zTTz9t2bLl8uXLjo6OeDewmtq+fbuenh6bza6trb169WpOTg4+9dvp06fj4uL27NlTXFzM5/PLysrU+s7XAwcOZGdnR0VFlZWVVVVVVVdX6+vrK/dwhYZQ+cbGxlJTU7lc7oIFC1atWkV2OkpTXFz8+PFjYnXJkiX4oJi+vr6UlBSBQLBixQr8Cob6ys/P53K5xKqlpeWHH36ILxcXFxcUFFhaWkZERCg+T0Dt9Pf3Z2ZmNjU1aWtre3t7h4SEEL+SXC43LS1NKpWuXbvWzc2N3DyV5dmzZ3fv3t2wYQO+KpfLf/jhB3zYxcaNGycOhFYjDx48uH37dk9PD4vFWr16teI4oLy8vJKSEhaLFRER8RZMwXj9+vXy8nI7O7vw8HBDQ0M8qMTDFRpCAAAAGk2Nz5cBAACANwcNIQAAAI0GDSEAAACNBg0hAAAAjQYNIQAAAI0GDSEAAACNBg0hAGrmypUr9+/fJzuLyQ0PD4+Njb32y4VCIT7jBwC/JWgIAVAze/bs+e2fh1JeXv7FF18sX77cyclp+fLlEze4evWqq6urkZERnU5fuHDhgwcPiKKcnBzHydy+fZvYpqio6J133jEwMKDT6cHBwcQjtQD4DajxUxUA0Eyff/65i4vLb/ymSUlJV65c8fb2HhkZaWtrG1ealZUVGhq6dOnSkydPSiSSr7/+OiAg4MGDB3Z2dgghBweH6Ohoxe3Pnz/P4/GIZ2LV1dWFhIT4+PjEx8f39/d/8sknQUFBDx8+JOYSAkC13mRWXwA0R1dXV29v76RFIpGoq6tritdKpdIXL16MjY0RET6fPzAw8H/fVCwWd3Z2CoXCl8mwt7dX8S0USSSSFy9ejIyMTCwSiUQvXrz4v28hEAjkcjmGYb6+vrNnzx5XumjRIhaLReykq6vL0NAwJiZm0l0NDAzo6+uvX7+eiKxbt87Q0LC/vx9fxR8YPXFScgBUBC6NAo1WWFjIYDDweYgIR44cYTKZ/f39+OrZs2enTZtmZWVlbm7u7u5eUlJCbJmSkvLOO+/QaDQrKytjY+MNGzYIBAKi1N/ff+vWrSdPnrSysmIymSkpKRiGxcbGGhsbW1tbm5iYMBiMY8eOTZpYW1tbSEgInU63sbHR19efOXNmVVUVXjR37lziSe7JyckMBqOysvK9994zNzc3NDQMDAzs6ekh9jMyMrJr1y5zc3Mmk2lgYODi4nLnzh28aGhoKDo6msFgMJlMY2PjDz74gM/n/9oHZWpqOsWsp7W1tX/4wx+IEzhLS8s5c+Zcv3590o0vXrwoFAq3bt2Kr2IYlpOTExQURDzB1dfX19ra+saNG7/2dgAoFzSEQKP5+/ubmpomJiYSEblcfu7cucWLF5uamiKE4uLidu7cuWnTpqqqqvLy8hkzZgQHBzc2NuIb8/n8HTt2lJeX19fXnzhxIj8/PzIyktjV4OBgVlZWUlLSuXPn7t696+fnl5ycfOzYsbi4uMbGxrq6ujNnzvza87u3bdv25MmT7OzslpaWioqKjz76CPvlscD42SS+PDY2JhAINm7cGBYWVllZefr06Tt37hw8eJCoy8qVK5OSkmJjY6urqysqKqKjo0dGRhBCMpksJCTkxo0b8fHxjx49ysjI+Pnnn0NCQmQy2Wt8jBQKZdwLZTJZZ2dnd3f3xI3Pnz9va2sbEBCArwoEgqGhIXd3d8W9zZ49u76+/jUyAeB1kHtCCgDpjhw5oqurS1zbvHnzJkKouLgYw7D+/n4DA4Ndu3YRG4+NjU2fPn3Hjh2T7iohIUFLS2t4eBhf9fLy0tPTe/78ObFBTEyMm5vby2RlYWHx1VdfTVrEZrN37tyJL8fHxyOEzp49S5RGRUVZW1vjy/g5WUJCwsSdpKenI4Ru375NRMrKyhBC+fn5Uyc26aVRPz8/CwsL4mLv8+fP8bPD+vr6cVvis6oqVg2P/Pvf/1bcbO3atYaGhlNnAoCywGAZoOmioqK+/vrr//znP5999hlCKDEx0cXFxdfXFyF09+7dkZERNpt969YtYnt7e/u6ujpi9f79+/n5+Z2dnXg/HIZhra2txPnNvHnzFCfH8fLyOnfuXHh4eFhYmJ+fn76+/q9l5eXlderUKZlMtmbNGg8Pj6nnkwsODiaW3dzckpOTRSIRjUYrKCigUqlbtmyZ+JL8/Hw6nS6TyYiqYRimo6NTV1cXGBg41ec1mb/+9a8rVqxYunTpxx9/LJFI4uLi9PT08Ompx0lOTtbS0vrzn/9MRPBTyXEV1NbWfr1zUwBeAzSEQNNZWFisXr06MTHx008/bW9vz87OPnr0KN4fhveZHTlyZNzP9IwZM/CFbdu2paSkLFmyxNnZ2czMDL/qSFy3RAhZW1srvjAqKqq3tzcxMTEtLU1PTy84OPjYsWPE3hSlpqbu27fvxIkTf//7321sbCIjIw8ePEij0SatgpmZGbGsq6uLYZhEIqHRaD09PZaWlpO+is/ni8Xi9evXKwbxEStTfVi/YtmyZZmZmUePHt2zZ4+ent6mTZsGBwfPnDkzrvpisTgtLS0gIECxykwmEyHU19enuGVPT49ipQBQKWgIAUDbt29ftGhRSUlJSUmJtrZ2eHg4Hsc78K5du+bv7z/xVTweLykpKT4+/i9/+QseycjISEtLU9xmXAtKpVJjY2NjY2MbGxtzc3MPHz78xz/+cdLOMCaT+f3334vF4oqKisuXLx8+fJhCoXzzzTevVC9TU9Pe3l6pVDpx+lkTExNjY+Pe3t4phsC8kuDgYMUT00WLFjk5OTEYDMVtrl+/3t3drdiNihCysLCg0WjNzc2Kwebm5pkzZyolMQD+LxgsAwB6//333d3dExISUlJS1q5da2lpiccXLlyoo6ODd6dNhM9lP3fuXCKSnZ39ku84a9asPXv27Nu3r6GhQfEMchxdXd1FixbFx8fPmzevvLz8JXdO8PX1lUgkP/7448QiPz8/gUBQUFDwqvt8GWVlZXfu3ImIiBgXP3/+vKmp6apVqxSDFArF398/JyeHeKZMTU0Nl8tdtmyZKnIDYCJoCAFACKGPPvrohx9+4PF4ird+29jY7N69OyEh4csvv+RyuaOjo01NTadOnUpNTUUIzZo1i0ajHT16tLu7u6+v7+jRoxkZGVO/y6FDhy5cuNDW1iaXyx8/fnzt2jUnJ6eJA0dFIlFkZGRpaalAIBCLxfn5+fX19d7e3q9aqdDQ0Dlz5uzYsePSpUsCgaC7u/vq1av4oJiwsDB3d/fNmzdfvny5t7e3v7+/srJy7969DQ0Nk+7q6dOn6enp6enp3d3dg4OD+HJTUxNe2tDQcPLkyerq6ubm5tTU1DVr1ri7u3/yySeKe2hraysoKAgPD594m/z+/fv7+vpiYmI6OjoaGhq2bdtmYWEx7h58AFSI5ME6APw+DAwMGBgYuLq6jotLpdJvvvnG2NiY+JOxs7NLT0/HS5OTkw0MDPC4h4fHt99+ixD66aef8FIvL69169Yp7m3v3r2KzYCXl1dNTc3EZEQikYeHB3HREr9aS9yuPnHUqOK9+XhkaGgIX+3s7AwJCSF2ZWpqmpubixfx+fzVq1cTF28pFMqCBQu4XO6kn09ycvLEX49//OMfeCmHwzE0NMSDVCp1zZo1E58wgF/Xra6unnT/58+fJz5kR0fHioqKSTcDQBW0sF9uTgJAk/F4PEdHx+PHj+/evXtiqUQiaWhoEIlELBaLzWYrFg0NDTXsI2cwAAAA1klEQVQ3NxsaGr5kn5ZYLG5tbR0cHGSxWIoDSifq6+tra2uTyWQODg74TY04uVyupaX1Sn17fD6fx+MZGho6OTnp6uoqFvX39z9+/JhOp0+bNk3xXV6VRCJpbm4eHh52dHQ0Nzd/jT2Mjo7W19fr6em5urpOPUoWAOWChhAAhBCKjo5OT0/n8XiKJ38AAE0Ao0aBpvviiy8uXLjA5XITEhKgFQRAA8EZIdB0t2/fxmdCeI3RKACAtwA0hAAAADQa9EgDAADQaNAQAgAA0GjQEAIAANBo/wW9TAP2MpIsggAAAABJRU5ErkJggg==", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p_interp = fit( r, y/1e6 )\n", "display(p_interp)\n", "scatter( r, y/1e6 , title=\"population of UK\", ylabel=\"/millions\",)\n", "plot!( p_interp , -5 , 60, legend=false, xlabel=\"years since 1970\" )" ] }, { "cell_type": "markdown", "id": "37db2212", "metadata": {}, "source": [ "You probably have already noticed that this is a bad approximation in this context (e.g. the population before 1970 was not larger than in 1970 and (hopefully) the population will not drop sharply as indicated above). In statistics, this phenomena is known as *overfitting*.\n", "\n", "It turns out that I did not plot all of the data points and so we can actually measure the *testing error* (that is the error on the data points that we left out when we came up with our model):" ] }, { "cell_type": "code", "execution_count": 285, "id": "3ad647e2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training error: 6.355287432313019e-14\n", "testing error: 3.947571417338935\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1xT19sA8OcSEiCMsEH2kiVDQcAB4t64B75a96RSZ93+3LPuOlHcrbUq7i0uqAMUUZAtG9kBwkwgyfvHbdMUIgqSXMbz/fQPcnLuOc9NLA/33jMIoVAICCGEUFslR3UACCGEEJXkqQ4AobbC399fTk5u//79TdLamzdvjhw5Mnjw4NGjRzdJg03rr7/+evr0aVZWFp/P9/f3d3BwoDoihL4IrwgRkpFz586dP3++oUe9ffs2ICAgPj6+VnlKSsrJkyfDw8ObKLqmtH//fk9PzzVr1pw/f/7SpUvZ2dkSqw0ZMoQgiD/++KPuW+/evSMIwsrKSlRy69YtgiB69+5dq2Z6erqNjQ1BEBMnTqyurm7Cs0BtByZChJq1W7duzZkz58WLF7XKdXV1e/bsaWlpSUlU9du4caOqqmp8fDyHw2Gz2f369ZNSR/Hx8Z6engkJCXPnzj137hydTpdSR6h1w1ujCLVI3t7eT548oToKCfLz89lsdo8ePaytraXa0cePH/v37//58+fly5dv375dqn2h1g0TIWo9KisrY2JiWCyWlZVVZmbmw4cPi4qKrK2t+/fvz2Aw6tZPSkp6/vx5QUGBvr5+r169jI2Nxd8tLi7+9OmTnp6ekZFRXFzcs2fPKisrnZ2dvb295eT+vZXC4XASExN1dHRMTEzED09JSWGz2ba2tsrKyvXEnJSUFBkZmZWVJScnZ2dn5+3tLX5ZEx0dTd5XTEtLe/v2LVlItkmGp6+vb2hoKN4gh8N59OhRWloag8FwcXHp0qULQRDiFd69eycnJ+fs7FxZWXnnzp3U1FQdHZ0BAwbo6enV//GKhIeHv3nzprKy0tjYuG/fvhoaGqK3IiMjk5OTAaC6upoMWFlZ2dbW9htb/nbh4eGDBg0qLCxcv379unXrmrx91LYIEWotPnz4AAA+Pj779u2Tl//3jzw7O7ukpCTxmlVVVVOnThXPEPLy8kuWLKmpqRHVuXLlCgAsWrRo4cKF4v/LeHl5FRYWiqrdu3cPAPz8/GoFM2nSJAB48eKFqITFYmlqaopeVlRU1L1mMjc3Dw8PF9WReOfz1atXQqHwzz//BIDly5eLd/r777+LpyUAcHd3T0lJEa+joqKira0dFhZmZGQkqqasrHzjxo2vfsKfP3/u0aOHePuqqqrHjx8XVajVOwC4ubl9qbXBgwcDwIULF+q+FRERAQCWlpaikps3bwJAr169hELhkydPVFVVCYLYt2/fV2NG6KvwGSFqbd68ebNy5cpffvklJSXlw4cP06dPj42NHTx4cGVlpajOjBkzTp8+3bFjx3v37n369Onq1aumpqa7d+9esWJFrdYuXrx49uzZM2fOpKenh4WFDR48OCQkZNy4ccLvnoBbXV2tqKi4d+/eZ8+eJSYmvnjxYsGCBWlpaT4+PhwOh6xz5syZyZMnA8DSpUsf/uNLF1j37t2bOHEij8fbv39/fHx8eHi4r69vWFhY3759S0tLxWtWVFT4+Pj069fv4cOHr1+/XrJkSUVFxZQpU0T9SlRVVTVw4MDnz5+PGDHi1atXCQkJx44dk5OTmzVr1sWLF8k6V69ePXXqFAB07tyZjPbgwYPf+UHVcuvWrUGDBlVUVJw8eXLBggVN2zhqo6jOxAg1GfKKEAD27NkjXj5w4EAAOHjwIPnyzZs3AKCpqclms0V1kpOTGQyGvLx8WloaWUJeEQKA+KUSj8cj89D9+/fJkkZfEUq0bNkyABC/xlq/fj0AnDx5slbNWleEAoGgQ4cOAHD27FlRHYFA0LdvXwDYtm2bqFBFRQUA/P39xVsbMWIEAAQFBdUT25EjRwDAw8ND/Lr56tWrAGBsbFxdXU2WxMXFAcCAAQPqP1Nho64ItbS05OXlFRUVv+X6FaFvhFeEqLVRVVWdPXu2eMmSJUsAgPyVDQBBQUEAMGfOHPH7eObm5r6+vjU1NdevXxc/1sbGZujQoaKXdDr9p59+Em+taQ0bNgwAwsLCGnpgQkLCx48fTUxM/u///k9USBDE8uXL4Z9TFvfzzz+LvyQHdqakpNTTBXnKP//8M41GExUOHz7c3t4+IyNDNhM5ioqKampqVFRUzM3NZdAdaiMwEaLWxtLSstb4lI4dOwLAx48fyZcxMTEA0KlTp1oHurq6ilcjOTk51RpsUqu17/Hp06dZs2Y5ODioq6sTBEEQhKenJwAUFBQ0tCkyHmdnZ/EsBQCdO3euG62ysrL4A0IAIEfK5OTk1NMF+bm5uLiIFxIEQZaQ70pbjx495s2bV1BQ0Lt37+joaBn0iNoCHDWKWhtdXd1aJVpaWjQaTfScrKysTGI1sqTW47RvrNYIUVFRXl5eZWVlXl5egwcP1tDQkJOTy83N3bt3L5/Pb2hrXzopdXV1BoNRUVHB5/NFOVJJSalWdifHwQrrffBJdlF3cClZ0ogPhOy0qqqq7ltkofjoXBJBEIcOHQKAI0eO9OnTJzg4GNesQd8PEyFqbXJzc2uVFBQU8Pl8NTU18qWqqqrEamSJqNqXWqtVjfxlXTd1kWmjHps2bSopKTlx4sSMGTNEhY8fP967d2/9B0r0pZMqKiri8XgqKiq1rhQb10VxcXFubm6t25LkdWStz+1bsFgsAPj8+XPdt7KysgBAXV297ltkLhQKhUePHsVciJoE3hpFrU1SUlKtqxNy5IXo1yX5g2hangj5lMvR0VG88P3797Wuk2q1pq+vD5IyUGxsbP1xvn//HgB8fX3FC+tGRc6A/Oo1IhlPZGRkTU2NeDl5UuQ4mu9ENkIONRIR/jP4qBHZiGxQ4gdF3mj9UpsEQRw+fHju3Ll5eXl9+vTBe6ToO2EiRK1NeXn50aNHRS+FQuHu3bsBQLQ49ZgxYwAgICCgsLBQVC0pKenPP/+k0+nk+EmRxMTEa9euiV5yudxff/1VvDUzMzM5ObmQkBDxS8CgoKC6q4PWoq2tDQAZGRmikpKSkj179tSqZmBgAACZmZn1t9a+ffuOHTtmZmaKL2cqEAi2bdsGAGPHjq3/8G9Bfm67du0Sz8pXrlyJj483Nzcnn7A2yMiRIwmCCAoKSkhIEC9ns9kBAQEg9iHXRebCOXPmkLmwSR7ZoraL0jGrCDUlcvqEoaGhoqLili1boqOjX716RY6i7NChQ1VVlajm9OnTAcDBweH69evR0dEXLlwg14VZvXq1qA45fcLExITFYh09ejQuLu7Jkyd9+vQBgMGDB4v36+PjAwDe3t63bt0KDg5es2aNkpISORe+nukTq1evBgBnZ+c7d+7Ex8dfvXrV0dHRwsICAIYNGyaqFh0dTRCEpqbmqlWrjhw5cuzYsdzcXKGkCfXBwcE0Gk1JSWnnzp0fPnx49uwZmdRtbW3Ly8tF1cgJ9bU+OnJY6dKlS+v5eLlcLpntBg8eHBwcHB0dvXfvXhUVFTKZiap9+/QJoVD4448/AoCOjs6WLVsePHjw5MmT/fv3kx/CoEGDBAKBqKb4hHoRgUAwZ84cANDV1Y2Ojv6WHhGqCxMhaj1EK8scPXpUfE21jh07imYHkng83o8//ij+2IzBYKxdu1b8Ny+ZCBcvXrxixQrxoSX9+/cvLi4Wby0zM1P8Jp6SktLp06e/Oo+wvLx8wIAB4n+Vent7P336tFYiFAqF+/fvFx8FU8/KMlevXq01mMXb2zsrK0u8TqMToVAozMvLIydlimhpaZ0/f168ToMSYU1Nzbp168ipjSJ0On3u3LniyVv4hUQoxFyImgIhxB3qUWsRFRXl5OTk4+Nz48aN3Nzcx48fczgcGxsbLy8viUNFsrKyQkJCiouLtbW1vb29dXR0xN8NCgoaPXr04sWLd+/enZKSEhoaWlVV5ezs7ObmVmvIJQBUV1c/efIkJSWFxWL169dPS0srLy+vrKzMwMBAUVGRrEMuwkle7ohERERERUUJhUIHB4fOnTvzeLzMzEwmk0k+ehTH4XDIaRWGhoYKCgplZWXZ2dmamppaWlri1SorK0NDQ5OTkxUUFDp16uTs7FyrndTUVIIgTE1NxQvLy8tzc3NZLFat1iSKiYl58+ZNRUWFqalpjx49ak1Wqa6uzsjIUFJSateu3VebIpWVlb18+TItLa2mpsbY2NjDw4O8byyuoqIiJydHYrMCgSA1NRUAVFVVa32JCH0LTISo9RBPhN/fmngi/P7WEELNFg6WQQgh1KZhIkQIIdSm0cglfRFqBeTk5LS0tHr37m1vb//9rdFoNCMjo549e+Kylgi1bviMECGEUJuGt0YRQgi1aZgIEUIItWmYCBFCCLVpmAgRQgi1aZgIEUIItWmYCBFCCLVpLTURcjicxu1fKjMCgYDqEKSuLZwjuSYv1VFIXVv4KtvCOeI/18ZpqYkwKyvr+PHjVEdRn/LycqpDkLq2cI7V1dU8Ho/qKKSuLXyVbeEceTxedXU11VFIXZN/lS01ESKEEEJNAhMhQgihNg0TIUIIoTYNEyFCCKE2DRMhQgihLxIKhecCA3vY2nY2NOxha3s6IKD1jb+VpzoAhBBCzdfsceOUHzy4weGoA5QAbFy6dPqdO6evXaM6rqaEV4QIIYQke/fuXcGTJ/s4HHUAAGAB7C4trQgNDQ8PpziyJoWJECGEkGQhjx8PZ7NrFY5gs5/dv09JPFKCiRAhhJBk/Joa+TpL1cgLhfyaGkrikZK29Yxw7969v/32m2z6EggEcnKt/O+Mhp6jsbHx1atXpRcPQqhpuXXvflxTc9J/LwofaGhM6tmTooikom0lwsjIyGHDhg0ZMoTqQNoiDoczevRoqqNACDWAp6fnrg4ddoeHL6iqkgfgAxxUVMy1s+uJibBFMzMzc3V1pTqKtqioqIjqEBBCDfbHgwe7N250P3NGobqaR6cPnzjxzw0bqA6qibW5RIgQQujbKSoqrt66dfXWrdXV1XQ6nepwpKKVP8RCCCHUJFprFgRMhAghhNo4TIQIIYTaNEyECCGE2jRMhN9KKBSeOXPGy9VVkU4nCMJUV3f+3Lnp6elUxwXV1dXCOjNeEUIIfSNMhN+Ey+X69O+/du7ccRER4TU1nwCO5ufnnjrlZGf3+PHjRjf75s2b+Pj4hh4VExPz7t070cuOHTv+9ddfjY6hlm3bts2bN6+eCkFBQZWVlU3VHUIIUQ4T4TdZtnhxTmjo+6oqfwBHAAuAQQCXeLydlZWjfHxycnIa1+yxY8euX7/e0KMuXbp06tQp0ct9+/bZ2dk1LoBGmDhxIs4IRAi1JjiP8OsKCgqOHDsWwedr1HlrtlB4k8/fv3fvth07GtpseHh4WFhYUlISm812dnaeMGGCQCA4c+bMy5cvtbW1582bZ2xsDACpqalHjx7NysrS1dWdMmWKoqLio0ePKisrV6xYYWpqOm/evISEBBsbGy0trevXrysrK6elpYWEhDg5Ofn7+5PDnfPz8/ft25ednT1hwoRPnz55e3vXSpwCgSAgIOD169eurq58Pp8srKqqOnfu3Js3bwiC6NevH7koTEBAQE1NzdatW1VUVKZOnWpgYHD27NnIyEgFBYVhw4YNGDCgMZ8vQghRCq8Iv+7Jkyc2iooOX3jXl8t90PCrOgDQ1tbW1tY2MjJydXU1NzcHgEmTJt28eXP48OE6Ojpdu3YtKCgQCoW9evXS0tKaMmWKk5NTZmammpqagYGBjo6Oq6urra0tABw+fJh8VPno0aPp06dnZGSMHDnywoULmzdvBgAej+fl5VVeXj5mzJjAwMC1a9cmJibWiuTnn38+f/78qFGjCgoKDh06RBYWFhYmJyf7+Pj07dt348aNAQEBAGBtbU0QhJOTk6urK4vFSk9PZ7PZI0eO9PT09PPzu9a6tihDqK1JTk6ePny4h5lZ9/btV/v7czgcqiOSFWHLFBMTY2dn19CjJk+efObMmYYedeDAgUFMphBA4n/PAdppaDS0TdLMmTN37NhB/hwZGdmuXTsej0e+nDVr1u7duysqKuh0ekJCgvhR69ev9/f3F720t7cPCQkRCoXz58/39fUlC2/evNm1a1ehUBgUFNSxY0eysKKiQl1d/fr16+KtlZeXKygopKamki+HDh06d+5c0buVlZWpqamnTp3q2bMnWaKoqJiVlSXeQkVFRXJy8s6dO8ePH1/PybLZbI3GflAU4nK5VVVVVEchdRwOh+oQpK4tnGNVVRWXy23csSHPnnXW1n5OEDUAVQBnGAwXE5O8vLymjbBJNPlXibdGv05VVZXz5T0WigHUlJW/v5fo6OiioiLyIg8AiouLJ0yYoKSktGHDBldXVzs7u6FDhy5YsEBNTa2eRkSH6+josNlsAEhOTnZw+PtqVklJycrKqtYhaWlpTCbT1NSUfNmpU6f8/HwAYLPZ48ePT0lJMTMzKy0tLS4urttdRkbGuHHjSkpKDA0NCwoKVFVVG3/+CCFKLZ8582pBgREAANAAJvN4yllZ25Yv33PyJMWRSR/eGv06d3f3t5WVXxof8ohGc+/e/ft7UVdXt7Oz+/SPwsLCgwcPAsDKlSvz8vI2btz47NkzPz8/ACAIQviF+RIEQdQq0dLSysvLE70kk5w4FotVXl5e88/uYiUlJeQPBw4cMDExSUpKevTo0bp16yT2uHXr1l69esXExDx8+PCnn376UlQIoWaupKSEUVJi9N/C4Xz+X0+eUBOQbGEi/Dp7e/subm7L5SVcPUcDnCAIv4ULG9eytrZ2ZmYm+XP37t2zs7NFg0iLi4s/f/5cXl6enp6uqKg4YMCASZMmZWVl1TrqqwYOHPjq1atnz54BQGBgYEZGRq0K7dq1s7W1JYeh5ufnX758mSwvLy9nMBgAwOPxDh8+LB6zqBFRnYqKCvIhIkKoJeLxeAp1/oymAYhGz7VumAi/yYnz52+qqk6i01P/KakGOAfQS0FhybJlXbp0aVyzU6dODQ0N1dfXnzlzprq6+tWrV1evXm1vb+/s7NypU6fExEQOh9O9e/cOHTp06dJl8+bNmzZtAoAxY8YUFBTo6+sPGjQIAOh0ej274+rr61+4cGHevHkGBgaRkZGdOnVSUVERr0AQxMmTJzdv3uzi4tKnT58ePXqQ5XPnzr13756Li4uTk5ONjY2o/tq1a319fbW0tO7fv79w4cKAgAA3NzdXV1fc3AqhlktbWzuXRiv/b+ErADuHLw0TbF2a9pGjzMhysAwpPT195ODBcgRhwWQ6qaio0Ommenpnz55tXGv1KCwszM7OFggEopKcnJysrCzxksZhs9ksFisjI6PuWwKBICMjg1ykRqSmpiYtLa2ysrKeNnk8XmpqqmiMT/2942CZZqstDCRpC+f4PYNlzhw7NlJdveCfYYDRAG46Oh8/fmzaCJsEDpahjLGxcdDt2/n5+W/fvq2srDQzM3N2dq7nUqzRNDU1a5Xo6el9T4OLFi1SUlJSVFT8888/J0+ebGRkVLcOQRB1y2k0momJSf2N0+l00UAbhFDLNXn2bFVNzSHLlimWl/MIgmVkdDww0N7enuq4ZAETYcPo6Oj06dOnqqqqBY2QnD9/fmhoaFVVVUBAQLdu3agOByHUTI0cM2bkmDHks/9WvPtgXZgIvxWfzz927Nj+/ScSE98LhQIVFa1hw3zWr1/Vvn17WYZRWlqqpKQkL2nkDqmoqEhD4z9r4FhaWlpaWjauu/Lycnl5eQUFhcYdjhBqcZSbYj5Yy4KDZb5JRUVFjx79lyzZm5Dwo1CYAJBTVnb10iWho6PLnTt3Gt3s8+fP379/36BDevToERIS8qV3hUKhpqamaArE95szZ86JEye+9C6Hwzlz5kxT9YUQQpTARPhN/P0XR0RUVlW9A5gBYAmgB+BVXX2ayz0yatT4b5/MUMu5c+fu37/foEMOHTrk7Oz8pXcJgrh7967M/qDLy8tbvHixbPpCCCEpwVujX5ebm3v6dKBAEA2gUufNSQBBe/fu3737l4Y2W3fR7VWrVk2YMOHo0aMqKio7duw4fvz4y5cveTyeu7v7vHnzyFv2YWFhenp6mpqat27dYjAYaWlpDx8+dHBw+Pnnn5WUlAAgODi4Z8+e8vLyx44d8/DwuHbtWnx8vLe395w5c8jp9h8+fDh8+HBVVZWfn9+dO3d++umnWsNzSktLd+7cmZiYOHjwYFFhTk7OiRMnYmNjmUzm2LFj+/fvDwCHDx+uqKhYsWIFAKxYsaKkpCQwMDAxMZHFYk2ePBmfRyKEWgS8Ivy6p0+fKil1ALCR+C6XO/bmzUeNaNbAwMDQ0LB9+/Z9+/YlV0H75Zdf5s6d26NHj/79+wuFwqSkpPHjx8+YMePu3btLly4ljzpz5gy5xPbjx49nz55dUFAwc+bM4ODg//3vfwAgFAp37drF5XIB4MKFC5MnTzYxMZkwYcKOHTv++OMPAMjIyOjVq5ejo+OUKVM2bdq0bdu2uvdRfXx8MjIy/Pz8wsPD7927RxampaWpqanNmzevX79+M2fOfPLkCQC4ubnR6fS+ffv27dtXUVExMTHRyMjoxx9/7N69+8iRI6OiohrxsSCEkIzhFeHX5eXlCYWGX37fuKAgtxHNGhoaGhoaWllZ9e3bV1S4YcMG0csdO3aUlpbm5+evWLFi4sSJ+/fvr9WCh4fHypUrAYAgCPKyrJaJEydOnz4dAGJjYx8/fjxhwoTAwEAfH58ff/wRAExNTesOonn79m1sbOyDBw8YDIaXl5fozq2Hh4eHh0dubq6BgcEPP/xw+fLlXr16iRIhWadv374CgYCsM3LkyKtXrzo6Ojbik0EIIVnCRPh1LBaLIOrZipatosJqqr5Es3aqqqomTJgQFxdnZWVFo9Gys7PrVhYNWNXS0pK4Wa54hfDwcABITU0VbUZoYWGhqKhY65BPnz7Z2NiQC6cRBCHKZB8+fJgwYQKLxdLX18/IyJA4vzAkJGTGjBn6+vo6OjqJiYmenp4NPHuEEKIAJsKv69KlS1XVLIBCAK2679Jo9729uzZVX6J5ERcvXiwrK4uJiSEIIi4u7saNG3Urf3U6f901uLW1tXNycsifi4qKqqqqalXQ0NAQz6nkFhYAsG7dOj8/P/JScvv27WFhYXXbX758+ZYtW8aOHQsAixYtqts4Qgg1Q/iM8Ousra27dfOm0xcD1N1dIYIgTi1c+GPjWtbV1U1OTpb4Fo/H4/P5QqFQIBD88kuDR+J8ybhx43777bcPHz5wudz//e9/NBqtVgUPD4/s7GzyEWBERERoaChZzuVyq6urASA/P//kP9uyaGtrl5WViXa04HK55C4W6enpFy5caKqYEUJIqjARfpPz50+oqz9mMEYDxPxTVgFwjMHos3792kavNz1jxoyPHz+ampouWLAAADQ0NEQXeb6+vlVVVRYWFjY2NmZmZqI58qqqquTwUXLVNLJQXl6exWIBAEEQLBaLvFBTVVUl73ACgIKCAjmnwt3dfefOnRMmTHBwcLC3t2cwGLWWyFFTUzt//vzEiRPt7e0XLVo0fPhwspc1a9bs2LHDwcGhd+/eQ4cOJVtjsVgrV650d3e3tLTMysrauHHjTz/95OjoOHLkyFGjRjGZzMZ9LAghJEtf3NmumYuNjR09enRMTMzXq4qZMmVKnz59Jk+e3Igec3Nz/f2XBAX9Sadryckpc7mZhoZme/ZsGT16dCNa+0YlJSWKiopSWtglPDx86NChubkSRvoIhcLi4uJaK9QI/1k4u55bsnw+v7i4WEtLwj3koqIiS0tL0b3WloJcT7zVr61TWlraglYNbJy2cI5cLpcgCNFfwK1Vk3+V+IzwW+np6f3553kO53BkZGRlZaW5ubm1tbW0OyWv85qWj4+Pvb09j8e7ePHi9u3bJdYhCKJWFiQLJWY4cTQa7at1EELUEgqF5wIDb507x2azHVxcFm/a9NXl9Vs3TIQNo6amJtqxr4X65ZdfIiIi5OTk5s+f3+g1SBFCLVR1dfWIHj0cY2K2cThaAC8/fhx99+7Ws2f7DRxIdWiUkW4iJLfWMzY2Jq9sKisra40kVFdXrzXysKSkRCAQkD/T6fRau8iiWioqKoqLiw0MDL5UobCwUFlZWXyahK2tra2trUyiQwg1O6cDAtyiotaX/70L7yCh0C0/v//MmX3S06Wxr1yLIK3Trq6unjVrloWFxYQJEywsLN69ewcABw4csPyHsbGxgYEBj8erdaCjo6OZmRlZZ9asWVIKr9V4+vTpmDFj6qkwbty427dvyywehFAzd+/Chcnl/9mLXhugA4/X0CEXrYm0rgg3btwYExOTlpamrq7O5XL5fD4ALF++fPny5WSFBQsW5OfnSxyD8Pz583rWlUYIIdRo5eXlanUK1YTC8v9mxzZFWonw8OHDQUFBSkpKVVVVdZcv4fF4v//++5emmnG53JKSEmmME2lWQkNDo6OjFRUVL1++bG5uvnnz5rdv3x4+fFhFRWX9+vVmZmYAwOPx9u7d++rVKz09vYULF4puaZ44ceLmzZumpqadO3cWNVheXr579+6IiAhDQ8Off/6ZbAEhhMQ5dO788v17H7H5AkKANwSxxUbycsptgVRujebl5bHZ7EuXLtnb2xsbG48fP76iokK8wrVr11RUVHr37i3x8CFDhpiYmLRv3/7Roy8uZi0UCquqqt6KaXHj8uPi4lavXp2YmLhy5cqUlJThw4efPHly4cKF6urqkyZNIutMmTIlJCTk559/trOz69q1K7nf06FDh/bt27d48WJvb+/169eTNfl8fu/evUtKSlatWuXk5OTp6VlcXEzVqSGEmq35q1ev19FJ+OdlDcB6JrO7j4+6ujqVYVFKKleEZE6qqqpKSkqqrKzs1avXnj171qxZI6oQGBg4depUiQ9mnz17Zm5uLhQKDx06NGbMmE+fPkkcjl9aWpqTkzNz5kzyJUEQ8+fPJxf3qge57om4rS/3vcgMa9DZNY68nPyv/bYZqzS3LzAAACAASURBVP1n8W4TE5MtW7YAwJIlSwYPHnznzh0mk+no6KilpVVdXZ2fn3/lypXPnz9ra2t369bt5cuXx48f37Bhw4EDBw4cOODt7Q0AMTExd+/eBYB79+7V1NTs3r0bANzd3R8/fnzt2rWpU6fK4NQapLS0lOoQGoacR1j3YXYrU1ZWRnUIUtcWzvFb5hFqaWntv3Jl5qxZCoWFOgAfhcLhP/ywdu3aFvT/ZoO+SkVFRXIRknpIJRHq6+sDwJQpUwiCYDKZvr6+ot18ACAzM/PJkycBAQESjzU3N4d/Etv27dvfvHkzYMCAutXU1NTMzMzIMTjfTrSSp8hSdz+u68wGNdI4BBAqjNr75ZInCwAsFktPT49cioXFYvH5/NLS0pSUFH19fW1tbbKOk5NTTEyMUChMTU0Vrc3doUMHMhHGx8cnJCSIpkNUVla6uLjI4LwaqsXNaG4jE+qhBX41jdDqz5HBYHzLhHpPT8/nsbGFhYWFhYUWFhZ1fzE2fy1gQr26urqlpaXo1hybzVZT+/fpbGBgYK9evUxNTetvpKKigsPhiB8oDQwag0GjbBUG8akjEhfILioqqqmpIf+Z5uXl6ejoEAShqalZWFhobGwMAKJ1PrW1td3d3YODg2UVO0KoZdPS0sLlL0jSmj6xePHi1atXP3/+/OrVq0eOHCF3xQNyRYNz50QvSf7+/uQdwg8fPmzZsuXBgwe3b98eMWKEtbW1+GCQtsbKysrU1PTgwYMAkJqaeuHCheHDhwOAj4/Pnj17BAJBaWmp6MJ64MCBUVFR165dI18mJSV9/vyZqsgRQqgFkdYV8bx58+h0+rZt28hFnAf+s2ZBZmZmv379RowYIV7Z0dGRXNBLS0srJydnz5498vLynp6eP/3001fv7bZcampqenp65M8KCgriSxxZWFjIycnRaLSLFy9OmzZt9+7dfD5/1apVPXv2BIBt27ZNnDjR0NBQTU1twoQJ0dHRAKCrq3vz5s2ffvrJ399fKBTq6uqeP3/ewMBAW1tbSUmJivNDCKGWARfdbgF4PF7dm/4S56WQlWk0Wt39lSiHi243Z21hQeq2cI646HbjtLxnpG2QxH/WErPglyojhBD6kja6shxCCCFEwkSIEEKt1qoVq1SUTBnyxkoMI59Bo2qtbYJIeGsUIYRap26de72NUOUJXwPoV/MrH9zfbKhnl1/0qSVOHJQqvCJECKFW6N27d2/e5fCE1wH0AQBAiSfcUlHed82atRRH1vzg3wUIIdQKnb9wXqndUFWtdwo6uQKuQlW+fmWePq/4h5uXl23fTnVwzQwmQoQQaiWqaqpeZIc/z3wZz05iOxbbLlKozL9eVaBDY/AUdXMUdXPlmaWCIq3DESdHWA82UNGnOt7mom0lQhUVFT8/v4ULF1IdSFskFApb/SwuhCghEAreZEeef33xY1mCejmzt7n3koF+0eFRA6Yu4Qn+FK+pwFji61dMI2h+93+21rQaaT3Ew8BVrs76jm1N25pQz+fzORyOlEKqpaysTEVFRTZ9UaWh58hkMlvczHScUN9qtNZzDMl4eSTidG5yhvrz9JGPkxQ53OuamlUdO567fdvB2iM9o2c17ABQBBDS4DSDsbqgKInJZPL4vCdpoVcT7pRwOT+6zvA08qD6PBoAJ9R/FxqNRq7lJgPy8vKt8v86cW3hHBFqthLYnw5FnORwOcovqibsC575z2ZhY9jsA3/9tWXFiuiE1+NHT7x73wKEKgCV1lbt7j56Te5yw6AxBlj0HmDR+0Pex60v973NiZzXaRqFOxBQq21dEcpSa/3zU1xbOEe8Imw1Wsc5cjicTUuXPg15yOivT7NT91LsvHHyeldDo4icHPE5ADUAHoaGbzMzyZf137wpr67Y+erXzNLsdZ4/m/x3z9Tmqcm/Spw+gRBCLQOXyx3o5qb59rbx/PaTc0v+XPyoaMGB1fP96Xx+rV/l8gBEdbXoZf2PMJTpzA1ey0dYD/J/sOJe8mPpxN6sta1bowgh1HKdP3u6vbtihJvJ+l/fOsWzAeBQJcfr8mUejVYNIL5TTyWAXAO3nfGxGuCgY7cuZEduef4Ux/FNGnhzh1eECCHUAuRXFFyquEM3Ygb8L4TMggBAAPSrqnLx8trCZIpqCgHWq6hMmD27oV2Ys0wO9Nv6KPXppbgbTRZ3S4BXhAgh1NyFZUdsfbFPNUdu1o5XGv8d1yEAGDlp0iNFxX737g3icIQEcVtV1XXEiAUrVjSiI3UF1i+9N/g/WKGpqN7HrEfTRN/sYSJECKFm7X7y46ORZzb1WBlZ+vo286FHebnoLQHAA0XF+V27Dhs27NOnT6GhoTQa7aSnp5mZWaO701fW3dl7/eLgtSoMZQ8D1yY4gWYPb40ihFDzdTnu5vH353f33uioYzdh0qRn5uaHFBX5AABQCDCVxRo0ZYqOjg4AWFpa+vr6jhs37nuyIMmcZbLVe/W2l/s+5H383hNoCTARIoRQcyQE4fan+/54H/SjwWRjZQMAkJeXvxcWVujv39XExE1ff5St7Yjjx//3yy/S6N1Oy3p1t8X/C9mRWfpZGu03KziPUFpax6Sl+rWFc8R5hK1GyzrHgqLCyYenVgjKPI5EsauJd0pKO06c6NO/f/1HcblcgiAYjCabFx8Uf/th6tND/XfIEc3oqgnnESKEUCtXI+BPOPKDLjvv/uaQHdmFxwsK7mRkrJo4MSEhQcaRjLQZrCSv+HtMkIz7lTFMhAgh1IwIhII1wVtqKsuOH3ijwCOfBoIuwLqCguO7dsk4GAKIVV0XXo67Hs9OknHXsoSJECGEmgshCHeHHc4tyXM59pFeIxB/yxkgMSpK9iFpM7XmdZq29cVeHp8n+95lAxMhQgg1C0IQ7gs/llqSPs9ySj7Qar2bA6CprU1JYAMsepuxTM5E/UFJ7zKAiRAhhJqFgHdn4wuTfum1obOza4ySUsZ/3z2orj664YvFNJXF7vPuJge31tkUmAgRQoh656L/fP054pfe65l0JTk5uUMXLw7X1w+g0z8APAQYpaXFGj58iI8PVeGxFNQWus3d+fogtzXeIMVEiBBCVIqNjR08tXfA05Mxi64Od+ny7OlTAPDo0uVJXFz5hg37hg4NnjNn2c2b+06fpjbOHsZdLdXNrsTfpDYMacAl1hBCiDIfP36cMWOY1pT2p7e/tEznpAHMGD26NDBw6IgRLBZr0cqVVAf4H7M6/uB3f9lQq/5qjBYzI/Nb4BUhQghRZt2ahbqTLNcfibBM5wCAKcBFNnvTokVUxyWZkapBD+Ouf8RcpTqQJoaJECGEqMHhlub2lJtxPdEtKl9UqAWgWFFRLraydrMy1WnCzaT7+RUFVAfSlDARIoQQBaoFNf8L2c6PLh72KLXWWzVCoZxcM/3lrK2kOdSy/9noP6kOpCk1088aIYRat91hh1kKarYF7Z4QhHh5JoCcpqZSA/eXl6X/6zD6efrL1rQYNyZChBCStasJtxMKk1Z2XbBu3/4l+vp35OTI3Q/eAIzW1t4WEEBxfPVSZaiMsxse+P43qgNpMpgIEUJIpj4WxJ2JurjZe5WivKKpqendiIgbY8a4Gxu7GRr+0rv3mZAQzx7NfWv4MbbDovNjYwpkvQi4lOD0CYQQkgU+n39s//7fzgbQZpkJ7+QGF9+eNH06QRD6+vpHL16kOrqGUaAxJjmMPfnht129N1AdSxPAK0KEEJKF8f37Z2/a4DRCe9bD5Ft3IsMXL/5x4kSqg2q8IZb9s0qzYwriqQ6kCWAiRAghqXv69Knqu3caI800ObxJNxJZAAc4nLSHD5vz7uL1k5ejjbIZerlVLDSDiRAhhKQu5N49KweVSDut1UfeEcK/C4ex2aHPn1Ma13cZbNk3/PO7gko21YF8L0yECCEkdWW0itAJ9v87+JZZVSMqpAmF/Jqaeo5q5pTpzL7mPW4k3qU6kO+FiRAhhKSLx+elOJVp3ki1SueIl9/T0urSvTtVUTWJ0TY+NxLvt/Q9ezERIoSQdO0LP+ZgaFdYqHZQQYEPAAA8gI1MpoKbW6dOnSgO7vsYqRq017B4khZKdSDfBRMhQghJ0eO0kPd5H5d6zL/67FnB/PnuBgYeurrdjY1VVq06ff061dE1gVYwZAbnESKEkLRklWbvDw/Y3WcDk64EdFi/a9f6XbsEAkGzXUq0EboYuh6OCIzOj3PQsaU6lkZqPV8GQgg1K9X86nUhO2Z2nGSlYSFe3pqyIAAQQAxvPzioJV8UtqrvAyGEmo/D704Zqxn6WA2gOhCpG2TZJzw7sqCikOpAGgkTIUIINb2/0l4/SQ4ZpTdIKBR+vXYLR86juJ54j+pAGgkTIUIINSU+n7929ZKVt9cx977c6NXX3dz88aNHVAcldSOth95Mul/Nr6Y6kMaQ4mCZK1eu/P7775WVlR07dty6dSsAPHr06NKlS6IKmzZt0tXVrXVUWlra5s2b09PTPT09ly1bpqCgIL0IEUKoyf1v0cIYxbeTnhXNfvUJAHIARvv6aj561LFjR6pDkyITNUNTlvGrz2+8jLtSHUuDSeuKcM+ePUuXLh0+fPiCBQvU1NTIwqioqKioKNd/1E1yNTU1ffv2ZbFYK1euDA4OXrp0qZTCQwghaaiqqnqU8VRHjT4t6O8tivQBdhcW7luzhtrAZKCfWY9HqS1yxTipXBGy2ey1a9e+ePHC2dkZAAYM+PdZsbW19ezZs7904K1btwBg165dAHDs2DEXF5ctW7aI8ihCCDVzYQlvmAON12wIodcIRIVuAAtb7OLa387bpPvhiFPl1RXKdCbVsTSMVK4I37x5065du7y8vNmzZ69YsSIjI0P8rUmTJi1fvjw2NrbugW/fvu3WrRv5s42NjZKSksRqCCHUDFULagJTLtBup5tkl4mXFwMoKytTFZXMqDJUXPSdnqe/oDqQBpPKFWFaWlp+fv7u3bv9/PxCQ0NdXV1jY2O1tLSsra2nTZtmaGgYFhbm6ur69OlTd3d38QNzc3M1NDREL7W0tHJyciR2weFwUlNTxVcn8vf3Hzt2rDROp3HKysq+XqmFawvnyOPxhEIhj9eyl1L8qrbwVcrgHM/EXmynqpcYy/0EYClWfkJJqf/o0aWlpdIOgMvlEgTBYDCk3dGXdNdzv/fpsaeuh1R7adBXqaioSKfT668jlUTIZDJLS0vPnTuno6MzbNiwZ8+eXbp0ae7cuUOGDBkyZAgA+Pr6crnc/fv3//bbb+IHqqioVFRUiF5WVFSoqqpK7EJVVVVfX//EiROiEnNz8y9Vpkpzi0caWv05komwLQzaavVfJUj5HD8WxAVnhpwcvH/8xaFjhgxZWlDgXVNTCnBaTe2Dre21lStl8K+IwWBQmwj7WPU4/OEUl8bTZmpJtaOm/SqlkghNTU3pdLq2tjb50sDAoLCw9kRLKyure/dqTzoxMTG5e/fvHT3Ky8vz8vJMTEwkdkEQhKKioqura5MGjhBCjVFVw936Yt/CznM0FNU1XFyCP348sHXrpb/+UmOxBvj6bp8yhSAIqmOUBQaN0d3I/XF66Djb4VTH0gBSeUbYrVs3Q0PDO3fuAEB+fn5oaGiXLl0AIDExkazAZrPPnTsnehwYGBiYkpICAGPGjPnrr78SEhIA4MyZM46OjlZWVtKIECGEmtDhiJOOOnbeJn//TtPU1Fy/a9e1ly/P3rs3cerUNpIFSf3Mez5KfUZ1FA0jlStCOTm5gICAH374wcrKKjExccaMGX369AGAmTNnJiUl6erqfvr0adCgQcuWLSPrr1y58vjx4+bm5kZGRhs2bOjataulpWVmZmZQUJA0wkMIoSb0Nuf9i6zwU0MOUB1Is9BJz6mwsiidk2WiZkh1LN+KkN7yP5WVlUlJScbGxurq6qLC9PT0oqIiExMT8UExFRUVCgoKNBqNfMlmszMyMmxtbeu5pR4bGzt69OiYZjwiubS0tNU/dGkL59hGnhG2ha9SSud44+6Ng9mntF7zu1t7T583j8mkcuYA5YNlSAffnmDSmdOd/k9K7Tf5VynFJdaUlJQcHR3FsyAAmJiYODs7i2dBAGAymaIsCACamprOzs6t/lcPQqhF4/P5EwcNOvZgW6enSSsCbgpWr/a0tsYZXwDQz6znw5SnQmgxi6ziWqMIIdQYJ48cUS2P1zRU2nAx1hngJy73XFaWX3OaxEUVGy0reTlabEEi1YF8K0yECCHUGFf/OJszzmrZifeKPD5Z0gFAIT//S7Of25Q+Zj1a0JAZTIQIIdQYpZ5K/V9kOcazxQt1Adhs9pcOaTv6mfV8nBYiEAq+XrUZwESIEEIN9iz9BcNEzfVyXK3yOKHQ1NSUkpCaFUPVdtpKmtH5LeOJKSZChBBqmBIuZ/+bY7Psp6xUVS8RK9+nqOjev39bWFb0W3QzcnuZ9YbqKL4JJkKEEGqYPWFHBpj39u05xv/IkV7t2s3T1l6lrt5DR+fTmDG7AwOpjq656Gro9iIrjOoovokUN+ZFCKHWJzTzdXJx2upuiwBg5Lhxg4YNi4qKKi4uXuDkpKenR3V0zYiNZnsOryyrNNtQtR3VsXwFJkKEEPpWxdySPWGHN/dYzaD9PWldUVHRzc2N2qiaJzmC6GLg+urzm9E2PlTH8hV4axQhhL7V/vCA/ua97LWtqQ6kZehm6PYiK5zqKL4OEyFCCH3di7/+GjNz0OOI4MfLzt65eZPqcFoGt3adYgriy6srvl6VUpgIEULoK3b+73/bxo+qcarZezh806MnF6dM+WnKFKqDagEU5RUdtO3eZEdSHchXYCJECKH6ZGRk3DxyxMPHsF9Ytks82wbgTFFR5u3bYWEtY0gktboaur1s9ndHMREihFB9HgcHdzdjRNtoTr8SLyqcWFj48No1CqNqKbobub/6/KaZLzGDiRAhhOrDqeR8+MH+58APSlU1okJVgPKSknqOQiQ9ZR0NRfXYwgSqA6kPJkKEEKpPmmG+XGyJa3S+eGGIioqzpydVIbUs3Qyb+xIzmAgRQuiL3ua8Txdk13wgzsr/O+v6LkE80tcfOXo0hYG1IF0N3V9kNuvnqd+UCGNjY3/77TfccBIh1KZU1XB3vT601N3vz7sP30yY4KKjM05Pr4uu7u+DBl0LDaV8I/iWwl7bhl1VnFOeR3UgXyR5ZZmBAwe6uLhs3boVAG7fvj1ixIiamhoajXbq1KkffvhBthEihBA1AiLPOut2cDdwAYADZ89WV1dnZGQYGRlhCmwQOYJwN3B5lfVmhPVgqmORTMIVYXV19ePHj/v27Uu+XLt2raur68ePH/39/ZcvX15dXS3bCBFCSNby8vJep7x5lvHCz3W6qJBOp1tYWGAWbIRmvsSMhERYWFhYXV1tZmYGANnZ2ZGRkUuXLrW3t1+1alV2dnZ6erqsY0QIIVn549w5FyOjaZ2cl19blXPq/dvQ5vvruwVxa9cpKj+Gy+dRHYhkEhKhkpISAJSXlwPArVu3CILo1asXAKiqqgJAcXGxbCNECCEZOXv8eJC//5OsrBGe6t4p7D9vvls/duxfoaFUx9XiKdOZFuqmH/Nr72PcTEhIhCwWy9zc/MCBAykpKQEBAe7u7lpaWgCQnJwMALjPCEKotdq3cePJkpJ8E7Xb3iYLz0YbAhxns7ctWUJ1XK1BJz2nd7lRVEchmeRRozt37jx79qyFhcWHDx/Wr19PFl6/fl1fX9/Q0FB20SGEkKxUVFSo8HhKNGL77I7zLsRolHABwBogJzOT6tBaAxc9p4jc91RHIZnkUaNjxoxxc3OLiopycHAgHxYCgIODQ2BgIEEQsosOIYRkhcFgVAqFF4ZYaZZwB4T+nfwEAEI5nG/dBDro2CYXp1XWVCnJK1IdS21f3JjX1NTU1NRUvMTHp7lvrogQQo0mLy+v4WT+x0D1wLUhosIbNFo3b28Ko2o1FGgMaw3LqPwY93YuVMdS2xcTYU1NTVRUVEZGBpfLFS8fO3as9KNCCCFZEwiFRvM9os8+DS3mDQCoBvhTQeFEu3Z39u6lOrRWopO+47ucqBaTCENDQ6dOnfrp06e6bwmFQimHhBBCFAiKv6WqrHLr2KNdOmt/DQmhy8v3Gjr02Zo1TCaT6tBaiU56TocjTlIdhQSSE+GUKVNoNNrly5ft7e0VFBRkHBNCCMlYbnne2eiLv/bbpsvS3XnsGNXhtE722jYZnKwyXrkKQ5nqWP5DQiIsKipKTk6+f/9+//79ZR8QQgjJRnBw8K/7DmdnFbh1d6QPU/+/DqNNWcZUB9Wa0eXkbbXaf8iP6WboRnUs/yEhETIYDHl5eTU1NdlHgxBCstG3x5Dnf6XVCH4Wgm6W+nX9dq96VLiCHdVhtXYuek7vcqOaWyKUMCxYWVl5/Pjxv//+u+yjQQghGThw4MDz0PJqwQchTGFoeJiMLY87tmbCGD+BoFlvpN4KuOg7ReR8oDqK2iQ/IxwyZMiiRYuysrIGDBigoaEh/haOGkUItXQHdp2sFh4irwSsphz7/GhweXpPBbmO165dGzVqFNXRtWY2WlbZZTklXA5LoRnddJScCBctWpSbmxsUFBQUFFTrLRw1ihBq6YqKywGMAUC363OmQWbcwaUAAELLxMREiiNr7WgEzUHH7kPeRy/jrlTH8i/JifD169d8Pl/GoSCEkGzo66mzSxPoquoW/3fy497Vgho6AAAR1anTMKpDa/066TlG5Ea1gERYa00ZhBBqTdZvXTZx/CKryRNz/+pZmtweAOTgCUMhGYfKy4CLntO2l/uojuI/vriyDADExcVFRkZmZma2a9fOwcHB2dlZZmEhhJD0jB079ua7B/FaT1KOd5CDA3TioYLS+6ehN6iOq01or2lRWFlUVFWsoahOdSx/k5wIKysrp02bdvHiRfHCfv36Xbx4sdbYGYQQanHKqysq3fibLJf9xXmemfne03PUtGk3qQ6qrZAj5Bx17SJzo3uZelIdy98kJ8IlS5ZcuXJl+fLlvr6+7dq1y8/Pv3HjxrZt26ZNm3bt2jUZh4gQQk3r17cnPI279Hfq09+pD9WxtEXk3oTNOhHyeLwzZ85s27Zt6dKlZImenp6Dg4O5ufnEiRPz8vJ0dXVlGyRCCDWZsOyIdzkfTg89SHUgbZeLvtP1xLtUR/EvCRPqCwoKKioqBg4cWKt84MCBQqEwLS1NJoEhhFDTK6+u2PX68LIu/s1wV7y2w0LdtLiqpKiqhOpA/ibhilBdXV1eXp7clVe8PCoqCgB0dHRkFBpCCDWFnJycgD17PoaHG5mbyw03dG/XyVUfh/5RiQDCTts6piC+u5E71bEASLwiZDKZgwYN8vf3v3r1qmjBoeDg4KlTp7q6uoo2rEcIoebv/u3bPs7O1rt3b3z61OH1zTeZ4ZmnIqgOCoG9lk1MQRzVUfxNQiIEgCNHjujp6Y0aNYrJZJqZmTGZzL59+9bU1Jw7d07G8SGEUKNxudzlM2fez8vzFQhMFWgPZjhtP/4u98+rj4ODqQ6treugY/OxIJ7qKP4medSooaFhRETEpUuXnj9/XlxcrKqq2rVrV19fXxUVFRnHhxBCjfb69esePJ4mAAAcmWDfMa7Q433ePIArp0/37oPjRalkr2UTz07iC/k0gkZ1LF+eUK+goDBp0qRJkybJMhqEEGpCxcXF2jweAETaaYW66p9e8RQAtAGK8vMpjqzNU2Eo6zC1U4rTrDQsqI6l3pVlvl9kZGROTo6pqamd3d/bfOXl5UVHRysoKLi6uioqShi1lZ6eXlNTQ/7MZDL19fWlGiFCqBWztrY+raRUVV25Y6bzkpMfVMurAeAdjWbj6kp1aAjstW0+FsQ3r0R46dKlJUuWrFixws/Pz9XVNf8LfzGlp6d/S7tlZWWjR4+Oj4/v0KFDYmLi2bNnu3Tpsnv37i1btri4uHA4nM+fP9+5c8fJyanWgZ6enqqqqkpKSgDg5eW1d+/exp4aQqits7W15VpaLrPRd0ws6vYuFwBSAXZrad2eP5/q0BA4aNtE5ccObz+I6kDEEqGxsbGPj4+VlRUA9O/fn8PhfE+7K1asoNPpCQkJDAYDAMi9LAYMGDB37lxlZWUA8PPzW7169c2bEpY1+v3333FdU4RQk1j92/41wZs/bnlTqK6ew2CkqKkd++23du3aUR0XAntt24uxzWKpsn8TYZcuXbp06UL+vG3btu9pVCgUnjlzJjg4ODc3l8vlWlhY0Gg0ABCfmGhvbx8dHS3x8LS0NDk5OUtLSyaT+T1hIITauKqaqoPRgduGrDMZavDu3TtLS8v27dvLyUkeLY9kzIxlUlhZ1Bw26ZXKM8Ls7OyysrLt27dnZWVxOBwNDY1bt25pamqKKlRWVh49evTHH3+seyydTl+3bl1NTU1mZubBgwcnTpwosQs+n19aWvrnn3+KSlxdXc3NzZv8XBpNIBCIZmG2Vm3kHIVCYVs4zVZ5jofenuyo6+Cm3wkAunfvrqqqCgCt8kxJAoGAIIgWdII2mlYxBfEe7Rr2yLZB/1y/5e+efxNhcnLyy5cvv3rAlzKTuLKyMgCwsbEJCgri8/mDBg3auXPn9u3byXf5fP7kyZOtrKzmzJlT99jIyEjyH+uNGzd8fX179+4t8SZGZWUlh8MR3x+DIIhmdbuDy+XS6XSqo5CutnCOPB5PKBQKhUKqA5GuVvlVvs//+CIr/GifX6qqqqCVnmMtXC63hSVCdasPOTHOGh0adFSDvkoGgyEv/5VLvn/ffvbs2fTp07/a6LckQjIhDR06FABoNNqQIUNu3bpFviUQCKZNm8bhcG7cuCExUZNZEACGDRumo6Pz7t07ielNRUXF0NDwypUrXw2GKnw+v9Xf2m0L5ygvLy8UChUUFKgORLpazVeZmpr6+vVrgUDg4OK4N/bY8i7+Oixt8q1Wc471oNFoBEGQIzNaBOd2DpfjbzT0e2nyr/LfjOlqjgAAIABJREFURDh+/Ph+/fo1SaOqqqpOTk5ZWVnky4yMDHLDCqFQ6Ofnl5KScu/eva/+ZmGz2fn5+Xp6ek0SEkKodRMIBCv9/MKCggaXlsoJhQEzndWNjF2G1h6XjpoVe23ruBeJAqFQjiAoDOPfRMhkMpswx65atWrZsmU8Hq+wsDAwMPDu3bsAsHXr1tOnTy9btuzgwYMAoKamNm/ePADw9fU1MjLatWtXWFjYiRMn3N3dq6urjx075uXl5eLi0lQhIYRasV937hT89tvjsjIC4FVH3XArVeuND7YVrV67YwfVoaEvYimoqSuw0jgZ5iwTCsOQ1oT68ePHs1isK1euqKurP336lJwO4erqumHDhrqVx40bp6amBgAWFhbW1tavXr1iMBgLFy6cOHEiQemfCQihluL3Y8eelJURAGVM+p5pTquOvnMoKnU/fx4TYTNnr23zMT+uuSTCa9eurVmz5qsHfGnOQ10DBw6stalh3RLSqFGjyB+0tbVFuwEjhNC341dWkne0dk936vn6c8fYQgCgV1cLBAKcL9GcddC2iSmIH2rVn8IY/k2EWlpanTp1ojAUhBBqPDq9GuB5V8NPJmorAiIBQAjAlZPDLNjMddCxvZZwh9oY/k2EXl5eXl5eFIaCEEKNNnT8+F2/nXg9qcP23WEKPD4AnGIweg8eTHVc6Css1c1yK/LLeOUqDGWqYpDuotsIISQbK7ZsHqYTp/hX5sfk4jiAWxoauXZ2f/z6K9Vxoa+QI+SsNSzjChM7t+tIVQz/JsKMjIzIyEg7OzsrK6sHDx5wuVyJB/j4+MgqNoQQ+lb305+YOrWf1G3ZC4uHQoHg//r06d27N9VBoW9ir23zsSCuWSTCR48eTZ8+fevWrStXrvzhhx/y8vIkHtDql9hACLU4maWfT77//UC/raYsY2+vHlSHgxrGXtvmZtJ9CgP4NxGOGjXKw8ODnMAeEhIi2hQQIYSam8zMzOuXL2clJrZ3cRk1bsyWF3smO443ZRlTHRdqjA7aNjtfU3kT+99EyGKxWCwW+bO1tTVF8SCE0FecPHTo+MaNMwsKegoEUQzGgJAjDj7dRtkMoTou1EiaShoMOXpueZ6esi4lAeDAYoRQSxIXF3d63bpneXkzBIL+AEOMmPpumhGrb1RVVlEdGmq89poWCexkqnqXnAgrKiq2bdvWtWtXAwMDzf+ScXwIISTu0unT/mw2uap0lQJtk5/LwnMf++UUP3/+nOLI0Hdor2GZWERZIpQ8fWLatGmXL1/u06fPmDFjWv167QihFiQvPb3vP0P29k926BhX2PP152h5+ZycHGoDQ9+jvabF3U+PqOpdQiIsLy+/cuXK/v3758+fL/uAEEKoHqb29vE0Wlc+P8RVP9JOO3DVMwCIU1Mba2ZGdWio8aw1Lfe/CaCqdwm3Rqurq/l8frdu3WQfDUII1W/CtGm/amomaCjume609nAEs6rmA0AYi9W9e3eqQ0ONp6esw63hFlWVUNK7hESorq7evXv3p0+fyjwYhBD6CkNDwx3nzk1f0EX5efaTFM4cTc0fbW1/u3//q7uQo+aMAMJKwzyJoseEkv/pnD17dvTo0ZWVlf369dPW1hZ/y8LCQiaBIYSQZNmGJR27uA/r1idrQNZka+uuXbviytqtQHtNywT2J7d2FOz98MW/oVRUVNasWVN3YyZcWQYhRKG4wsQr8TePDdyjp6xDdSyoKbXXsHiRFUZJ15IT4ahRoz5//rxx40ZLS0s6nS7jmBBCSKLy6or1oTuXeszHLNj6WGtanon6g5KuJSTC/Pz89+/fX716dcSIEbIPCCGExAkEgoyMDA0NDTU1tT1hR7oYdPY08qA6KNT0TNQMCyvZ5dUVynRZz9mTkAiZTCaNRmvXrp2MQ0EIIXF8Pn/P5s3nDx+2IogioZDoa6kz0v7MyMNUx4WkQo6QM1c3SS5OddSxl3XXdYuUlZV9fX3Pnz8v41AQQkjcqvnz2b/88iYv70pu7in5CiVPtU+bHuVkZlMdF5KW9hqWCexPsu9X8jNCLy+v1atXJyYm9u/fX0VFRfyt2bNnyyQwhFCbVlpaGnz5cnh5OQHAo8ttnO/64x8xNVGZv27evOv4caqjQ1LRXtPiY36c7PuVnAjXrVtXWFh4//79+/dr7xGFiRAhJAMJCQmuAAQAAOyd6miaVTroeUYRwK9h1AwsRDJgrWF5LeGO7PuVnAjj4+MFAoGMQ0EIIRElJaVSOTkACO5qGGWjFbDmOQBwAJRw9ePWy0LdNIOTxePzGDSGLPv9TyJ88uSJh4cHk8kUbUyIEEKUsLW1jaPTP+gr//pDh13bXzGragDgPJM5cPx4qkND0kKn0Q1V26WWZFhrWsqy3/8MlpkxY4aOjs6IESNOnTqVn58vyzgQQkicnJzc5mOH5y/u4nUxzjCdkwWwTlX1mZ3dDD8/qkNDUkSuLyPjTv+TCN++fXv69Gk1NbVFixbp6+t37tx5/fr1sbGxMo4JIYQA4INWqmfHnskG3ftbW//YpYvR1q13X79mMGR60wzJWHsNC9lvTPifW6MaGhpjx44dO3ZsTU3Nq1evLl26FBgYuGHDBgsLi6FDh44dO7Zbt264ph9CSAZuJd2PK0g4OnCXYj9FqmNBsmOtafkkLVTGnUrOavLy8p6envv3709PTw8LC/P19X38+LGXl5eRkdGcOXPev38v4ygRQm1KUlHyiffnN3gtV5THLNi2WGmYfypOFQhlOlrzK5d3BEG4ublt2bIlKioqJSVl/fr1nz9/vnHjhmyCQwi1KUKhkMfjcXila59vX+g215RlTHVESNaU6UxNRfXM0s+y7LQBO3iZmZnNnj179uzZOLMCIdS04uPjl02f/vnTJzpByM+162LfvacJbrTbRllrWiawP5moGcmsx8Y88MPHhAihJpSYmDixR491L16E5+bO8FR34FXF+R3+/fRpquNC1GivYZHIlul4GUxpCCGKbVu6dE9engvAi05697yMthyM+L2A/cvq1bj7adtkrWkp44GjmAgRQhSLioz0AsjQV94503n9wbcaHK4KgCGfn5ubS3VoiAJWGuZJRSmy7BETIUKIYgRBlCrKr13oNvNyXIfEIrKQJxTKyzdgEANqNTSVNACgqKpEZj3ivzOEEMW69uy5QCfO5WPB0CfpZEkuAEdZWVtbm9rAEFXMWMapJekaio6y6Q6vCBFCFDOb5ZGorqx7KYEPAABvAIZraW09dozisBB1zNVNk4vTZNYdXhEihKj0LP3Fq/y352YE/vpp497HjwV8vqWNzckDB+ztZb1NOWo+zFkmn4pTZdYdJkKEEGWSipL3hh/Z3WeTubrZnpMnqQ4HNRdm6iaPUp/LrDtMhAghmYqKijq1Z09KfLyhY/vMPsJFXeZZqptRHRRqXsxZJqkl6TLrDp8RIoRk58C2bYt69Rpy+vTut2FFhsmcqx8izz+lOijU7LAU1OTl5Asq2bLpDhMhQkhGUlJSLu3Zc6+wsDcB52c5O3wue/DH+yt796akyHTSGGoRzNVNUotldFGIiRAhJCP3bt2aVFQkDxAwzi5fU2lp4Ad5gElFRXdv3qQ6NNTsmLNMk0tkNHAUEyFCSEY4hYWafP7dHsZPPQw27Q+n1wgAQIvPL/n/9u4zoImkDQDwm4ReQ+gJvUhRpCMiAiqiiMop2LBX1LOeDcup51lO1Du7np07u2LFhgVQEKQJ0kV6bwkQCOn5fuTMF8HTUxMiZJ5fyWR29h028LKzs7MNDZIODfnuoDNCBEF6IWsHhxgXoxOTbMLDk/CtTH5hqqqqjZOTZANDvkMm6kYl3TVfBiVCBEG6ic2gftnz+o47nGZY284viQd4pq09KiBAsoEh3yFTdaOylgoedMfC6+j2CQRBukMjrWlTwm+LnOdeJrRe0Cm05nAKcDh5S8vrly7JyclJOjrku6Mip6woq1jf3qirrC3ufaFEiCCI2LWzaGtjfplgPXaC9dgp8UE1NTUlJSVmZmZ6enqSDg35fvHvJuyGRCiuoVEul/vHH3+4ubn17dt3+vTpgvKzZ8+6uLg4ODgcOHDgoxu+fv165MiR1tbW8+fPb2npvtXHEQQREyaHGRb7qxvRaYL1WH6Jvr6+h4cHyoLIp3XbiqPiOiMMCwt7+vTpvn379PT00tLS+IWxsbFr1669efOmkpLS+PHjiUTihAkThLei0+mjRo0KCwsbO3bs2rVrf/zxx/Pnz4spQgRBxI1Kpebk5l5pvKOpil/gMFPS4SA9jKm6UWZ9djfsSCyJsKam5uDBg9nZ2RYWFgBgbW3NLz927NjChQs9PT0BYPXq1ceOHeuUCG/cuKGtrb18+XIA2Ldvn6Wl5f79+9GjWBCkx+FyudvXrbsTEWEQZNKho9hwtsh+r+m4iRMlHRfSk5ioG90qvN8NOxLL0Ojr169NTU2fP38+cuTIKVOmpKen88uzs7OdnZ35r11cXLKzO6d64QpGRkZ4PP7t27fiiBBBELHatmZNx7Fj84dq6RIVboa/fFZRdXTRorjYWEnHhfQkJuqG5S2VXJ7YJ46K5YywsrKytLQ0Jibmt99+S0hI8Pb2zs3NNTQ0bGhowOPx/Dp4PL6xsZHL5WKx/0/GwhUAQENDo76+/qO7aGlpKSoqMjU1FZSsWLFizpw54ujO12lra5N0CGInDX1kMpk8Ho/JZEo6EPES7aFks9k3//571TDiM0fdg9tfKtHZSgCHyOR169c7RUeLcEdfRBq+rgwGA4PB9KZZuCqyKkX1xXpKOsKFX3QoFRQUZGVlP11HLIlQTU2NwWAcPXpUVVXVwcHh6tWrt27dWrp0KR6PF3SASqWqq6sLZ0EAwOPxwhNkqFSqhobGR3ehrq5ubGz88OFDQYmhoeFne9vNVFVVJR2C2PX6PvIToby8vKQDETsRHsqamho9T72HntoHt79Ua/vnfwhrgOqqKsl+YXr911VOTq6XJUJzDZMGdpOlqnmnctEeSrEkQnNzcxkZGSUlJf5bdXX19vZ2ADA1NRUMdb59+1b4fI7P1NT0ypUr/NcUCqWhoaFrHQEZGRkzMzPRR48gyLdJac6kD9Xfty1ei0IXFLYDyEnB/xOIaJnijYqbyz1IbmLdi1iuEbq6ulpZWUVERADAu3fv4uLihgwZAgAzZsw4depUS0sLnU4/cuSI4LaKX375JScnBwAmTpyYlpaWlJQEAAcOHBg0aJCRkZE4IkQQREyeVySey7ukcLu5roEmXH5SQWHM5MmSigrpoUzVu2PFUXHdPvHXX3+FhIRs2bKFyWTu3LlzwIABADBlypQXL14YGxtjMJiRI0cuXryYX/nSpUv8Ow61tLROnjw5evRoHA6nq6t77do1MYWHIIhoUSgUMplcKVO3P+3PPUO28Ow4k4YMmdfQ4MdkUgEuqqtn9elza+NGSYeJ9DAmeKOr+bfFvRcMT5wTclpaWtTV1TsV0ul0LpcrGDjtisPhtLW1dd1QWF5eXlBQUG5urmgCFQMqldrrL0hIQx+l5BrhtxzKjIyMFVOnyjY1qdioN04y82y03b4+HIfDtbe3/7l/f8rTpypqar7BwROnTsVgMKIN+4tIw9e1902WobMZgZHTHky8gsX8f/xS5IdSvEusfTSZKSgofHorHA736SyIIMh3oqSkZN6IERfr68kOOr9NMDm2J+ly7fOwcuqeEyeUlZV/2rgR0Fkg8g0UZOQJChpV1BpDNZL49oKePoEgyNc79OuvWxsaKPY6v813+G1fcr/i5l9ptNhbt6hUqqRDQ3oJU7xRqZifx4QSIYIgXy87LU3GSXfXAofde19ZFzcDAAbAhccrKCiQdGhIL2GKNy4W83wZ9PQJBEG+nqwD4Zib7p49r/qU/v8O4BYsVllZWYJRIb2JqbpRQmWyWHeBzggRBPkydPo/dwfeffeI66ttdSBTOAvWAxTIyQlWGEaQb9QNj6pHiRBBkP+ExWLt+/VXRyJxuLGxo55eyKbJf725cnz0viwNkw2qqiUAVIAHGEyAtnb46dOSnSCK9CaGaqRqag2XxxXfLtDQKIIg/0noxIkm0dGvaDQ5gItjLK7gG5p+qyOO0buXmPjXyZNrL1xobGpycHW98euvhoaGkg4W6T3kcXJ4BfW69gZ9FV0x7QIlQgRBPq+goKA2Pv4MjcbFYA7M6JtlSYj4Nf4PjuzVS5emzpgxKzR0VmiopGNEei0DVWJFa5X4EiEaGkUQ5PPS0tKGUalMWeyWZc6lJNUDOxPxrUzf9vbUp08lHRrS+xmpGVRQq8TXPkqECIJ8noyMDE1FblXYQCwPdu95pUxjAQATQKYXLWKCfLcMVIkVrdXiax8NjSII8hEZGRm3b9/G4XDjx4+3tbXt42x9eMOA4IzaJedzsO/XZbyhrj4qMFCycSLSwEiNlFidIr72USJEEOQDbDbbw2VoRlYDljcSgLNtS+DAUWZac4h9WMZJd1ODeDwSABVgr4pKZf/+owICJB0v0vsZqpEqWsU4NIoSIYIgHxg1PDAzsz8LDgFgAEDLJZ41ag83hnbq4JV7NmPnbNlCbmhQUlGZHBp6Y9kydJsE0g10lbWb6S10NkNBRizL36NEiCDIB2JfvGbBDQAMYHiGo28Qfe9l7/k1vWIUHISAsWMDxo6VdICI1MFisEQVvaq2GnO8iVjaF0ej35vGDvLT0ueSjgJBegA2m83jKQDIY+WYNov3ajonvd68j1rSn8tF/zQjkmQgztFRqUiEALA/9U8WhyXpKBDke1RVVZWRkdHa2goAMjIyAAx5jSb7Teu5HJk3O3YwWzQAOIBhSjpMRKoZoUT4jbQUCZYaZi+rxDjpCEF6oqysLJ9+/RY5O/89btwIC4tFU6ZQqVSrwQaO2xY3Jg8qOL6Sy5IDABk41s/aRNLBIlLNUJVYLrZEKC3DHcNNfR6XxnkbeUg6EAT5XjQ0NMzw87tUWytYHvtc5PVJmmTzHy1Tw9Mb09QB8AA8ecxZReUXD5+h/yMRSTJQI91590hMjUvFGSEA+BgNyqjLamWgh4UiyD/OHDmyrKFBkAVpCjIlixzoBqwwm6UVr7JXrCb0t9roYPvzup/NKdQyHR0dScaKSD1DNaL4hkal5YxQUUbBjegUUx4faOkv6VgQ5LuQn5oawOHwX78zUtu6zMU1q94noqDOugbbD7s7/Lfd4ZINEEH+Dy+vjgFMM6MFL68u8sal5YwQAPxMfR6XxEo6CgSRjMbGxp0bN07z81sxY0bss2cAoIrHkwF4GIgcYboqbODsyILlEdnNWBk1NTVJB4sgH2EgtpNCaTkjBABXfcfdSYeq22qJKnqSjgVButXz2NifJk9e3tg4nsNpADhy794VP79xs2adeB79YKIpWV3+6C/xpLr2FoBncnI7Bg6UdLwI8hGGaqTK1mo7bVuRtyxFZ4Q4DG6IkefjkjhJB4Ig3YrD4ayYNi2qrm46h2MNMBjgMpnMfvCgoK2oZsvAN63c2dsSsHXtdzGYEdravxw+rKioKOmQEeQjDFWJFVSxLL0tRWeEAOBn6rP95e8z7SZJOhAE6T4ZGRkODIbwMAhDDqc/xuAW+eHesTuajGrPNh2vKC3t7+Z2JSzM2NhYYoEiyCcZqpGeiGdpFOlKhNaalhjA5DW9tdHsI+lYEKSbtLS0aL2fFAMAOZYavy1w0CtvVbtMcZxvB8PtfIcPp1KpqqqqEgwSQT7LQJVYKZ5rhFI0NMo33NQ7Gk2ZQXqvysrKOYGBLgYGLiTSeC+v7OxsS0vLDBkZAGDKYv+cZLN5mcuCK3meh9OtrftLOlgE+QKGaqTqtloujyvylqUuEfqZDokpe8Hmcj5fFUF6mqKiorGurtPu3k2tqkqtrt7y4sU8H5/S4mJ8//7hfXXm7vSu01I8uz7OLLX2Vy2tBatXSzpeBPkC8jg5vIJ6bXu9yFuWukSop6xjqGaQXJMu6UAQRPR+WbbsQG3t0PcPzrUHuN7UtHHFYvstox6tcC9/UNVysWSJEn68qen+69dNTU0lGy2CfCn+xFGRNytd1wj5/Ex9HhU/8yC5SjoQBPkmXC43Ozu7oqLC3Nzc2toaAHIyMwcLVeBhIGeQAUw1UpJTujPzUvvYtry8PB0dnT59+uBwOEmFjSBfzVCVVN5aZaNqKdpmpTERDjUefOL1X00dFE1FDUnHgiBf6U1m5uKJE80oFDM6/ZyCQouBwYkbN+D9uSAAlJJU98/sR1OU5ZzMXxh/Q1FWUVlHCa2UhvRohmpiWXpbGhOhsqzSEGPPqHfR6D4KpIdqaWmZ6e9/tabmn3+MqdTkhoZJw4ZZWFsnV1dbq8ieHW8V406cfqvQ40lpkKkZujUQ6R0MVUkJlckib1bqrhHyjbcafafwAZoyg/RQ1y9fnkYmCw8PuQF4kMm+IZOXB/absntIm5Ls2bA4++iSyXiNrYcOSSxQBBEpAzVipRjuqZfSRGiibkhU1X9ZJfr/LBBE5F69ehXg5uZCIrkaGf00Zw6FQil688aOwehUjWAqf1c2xn6un2w08+atGj9F/I8ODrujovz80ULzSC+hp6zTTG9hcET8mGhpHBrl+6HPqFtv73sZomUVke/a9YsXjy1depxMtgTgAVw7f9736dMfpk2rx2KB+88NVdmWhD8n25Soyg+Wc143ZhWMkWzICCIuWAyWqKJX1VajhdcUYbPSmwi9DT2Opp8pb600UjOQdCwI8nFcLnf76tUvyGT+oi8YgIksFqu6OqGy8gmBMKmxsZqocibIKtdCY9LtwsRc+vycaxKOGEHEzECNVN1eaw/9RNimlA6NAoAMFudvNux24QNJB4Ig/2Cz2cf++GOch8fQfv1WzZ1bXV1dWlpqweF0WvoskM3OSU4euXGJ708DF2700CykjF0dE55FW//HfgKBIJnQEaS7GKmRKttEfJlQehMhAIy1HBldEktn0yUdCIIAjUbzdXQk//zzwcTEWzk5PufOjXZwSElO7nq7X4WBKm+s7ivDojGjQ1zK+mbI2FaFbbiVkRE0ebIE4kaQ7mWgSqxurxNtm9I7NAoAOkpa9jp9n5TGjbYYIelYEGl36LffggoLl76fAjOGy3VsaAjauJGOwXQA8O9+yDXXuDjWIt0cb9yodTLwpIKMPAyRYMgIIgEm6ob3CqNF26ZUnxECwA+Wo269RaOjiGTU1dVx3094eXTjxrQPJ4IaAOi0t89cunSyhsY9J72lPw/atsRJObepdk9e+IJ9CjLykggZQSTMVstqo+tK0bYp7YnQWd+ezmHkNOZLOhBEirS3t69btMheR2eOvb2Lnt7CSZPIZHJHR4dKl5oqMhh1H0PckYDdU+zSXpGL9ubl4axvv3ipr68vgbgR5PugKtf1d+WbSPXQKABgABNo6R9ZENVXy1rSsSDSYtLw4YFpaRlMJgYAAK5HRgZmZdna2SUWF3u9r1OjrXTL16TK2/gto3Tz0LUOunbcn7hYrLT/54og4iDtiRAAAsyHn8++Vt1WS1TR+3xtBPk2iYmJhLdv5zP/f0dwMIeTUllJWrhwTULCpaZGcl/tG34mWZYEhcTawdU2O0I386uhLIggYoJ+tUBJVnGc1agLOdclHQjSCzU3N29dtcrfyWmch8f+nTsZDEZGero3mdypmg+VWlVZ+MNf62cdGLF6ml3Wu47y7ZmeNpO3b90rkbARRKqgM0IAgPFWo6feWTjLbrK2kpakY0F6j/z8/JBhw1bW1y9hszsArmVk+Jw7F7JkCRuHAzabX4eDw7zqr3PVx6iib6W/ps1Jt8NaoNEyocXExASdAiJI90CJEABATU41wHz45bybS53nSzoWpPf4afr0s9XV9oK3HR3EkpInCQlFePySxsZ3JuqPPA2eDiSR6tqbUslbJvw02O2fhwlqaopy+SgEQT4N/cv5j4nWgdElsRR6i6QDQXokNpt9eM+e4f37DzA1nTpiREZGBovFaigrs/+wWjCb/SYvzXTNGN/woWHLXZQ62Ju2JbAO5uir2A0eOPjjTSMIImbiOiNMT08nv78QoqSk5OHhAQDFxcXFxcXC1Xx8fGRkPoghPj6eTv9nqRctLS0HBwcxRdgJQVHD18Trev7t+Q4zumePSK/BYrH8BwwY8vbtlfZ2PMDr0tIVaWkzd+xQERrbpKjLx7rpP3UnKRio2do7ezZ6Rf126mgZTd/IdtaqVUGT0KMxEURixJUI161bV1dXp6urCwAkEomfCOPj4//++29+hcrKysbGxpqamk4bhoSEkEgkFRUVAHB3d++2RAgAk23Gz3+wcoptkIqccrftFOkF/jp1avDbtxvb2/lvnQHuNzUN3LwZcLhqNflUF71YN/0CM7zH67qhd9+VyBuvTvoRAOYEzJJk0AiCvCfGa4SbNm2aOHGicMmMGTNmzPjnfGvy5Mn6+vqdTgf5jh8/bm9v37Vc3HSVtQcZuEUWRKEn1yOf0NjYGLZufUZKvpGp7k9rVnh6ej6NjPz5fRbko2koWA/S6fCznSpD9cqoC3xa5v57SguTM5lA2HojXFKRIwjyUWJMhDk5Obdv37axsenTp0+nj8hk8u3bt5OSkj66YVJSUkVFhb29vaGhofjC+6gQ26Clj8Mm2QQqyCh0866RHuGviL/mzV3P44SyYUJ6VlVU1Dz/EXYydDp/LdBSkmq8s16Cs26lrrJsDmW06Qjeu7aj13fmA+zX0KqUl//16FEvb28J9wFBkA9heDyeONodN24cg8GQlZV9/vz5lClTjh49KvzpwYMHz58/n5z8kQfEOzk5GRoastnsuLi4rVu3rl69+qPtZ2Zm+vn5LV++XFDi6+vr6Oj47ZHvSPzdkmA+0SrwG9uhUqmqqqqfr9eTSUMfmUwmj8eTl5cHABqNpq1pzeK8AjB6/zlbDuc+aiaRxCihOOqwZLCD0ms902rt85s8NTRvZ2cTCAQul1tPHqPfAAAgAElEQVRaWiovL08ikSTYkU+ThkMpDX1kMBgYDEZOTk7SgYjXFx1KHA732TuRxHVGGBkZyd93RUVF//79x48f7+vrK/j07NmzCxcu/OiGqamp/A2Tk5M9PT2Dg4NNTEy6VuNyuRwOh0KhCEra2toE6xd/ixCb4DVxW/yMfdTkvul3hsvliiSe75mU9JHH4/G7GRERgeP6sMAIAGSU2jXs0zUdkzX6mzVQqdVZ8quPpE8oaQYABsAGZeVBP/yAx+P5G/K/w9/zz0pKDqU09BGDwUhDN/97H//L/bjiSoSCfRsaGrq5ub1580aQCNPS0goKCib9yzQ5wYZubm4kEiknJ+ejiVBBQUFHR2fPnj0ij7yPtrm30aArb28tcZ73Le0wmUz+aUQvJg19xGAwgjPCyspKeUOStn0koX+aimlRS16/ptduJZcGasnMf/EqavWsWfva8wkYTA0GM2v58iVr1uBwXR8m+J2ShkMpDX0EAGk4IxT5oRT7DfXt7e05OTkLFiwQlJw+fTo4OBiPxwtKKBQKDodTU1MT3rCioqK6utrY2FjcEXY1u3/IzKgff+gzykCV2P17R74TWVlZGxcsqCopwcjjND3MnacPz7Evt9anNWVaVkQFNefZcZlyAICB60YuOqamppFxcSwWq7m5WVtbW9KxIwjyBcSSCGtqaoKCgnx8fGRlZSMjI83NzQMD/7nk1tHRcfny5Zs3bwrXDw0NNTAw+P3331+8eLF9+3Z3d3cmk3n+/PmQkJB+/fqJI8JP01BQn2w77vjrc9u9NnT/3pHvQUpy8rK5EyYZyZb7mOZZaBi9o7w4e21l6NZpc5bQmRt54Py+YjMOE7Zr72n+G1lZWZQFEaTHEUsi1NLSCgsLy87O5nK5O3bsGDNmjGDAk0ajnTx50svLS7j+0qVLlZSUAMDBwWH27NmFhYXKysoRERFDhw4VR3j/RbDVmOlvH2TUZzvoSCATI5LSwaan1mQk16TfTbunP9eS+6YhKLrU+Y8UBQanDGB2/pYnMdf9hgWzmc4s7lBZTAEXe3vdmjneaCIogvRk4po1Km55eXlBQUG5ubni28XTshcXcyJP+v+BxWC+YnNpmKLWa/pYSi6//DLyTUtuA5ZipWnuYeD2x4w1KWklnaq56Oik1NbyeLwzZ84kJiZaWFjMmTOHv2pET9drDuUnSEMf0azRr4MW3f5XQ409r+ffeVwSM8JMYiemiPi0s2hptZmvqtOelyQ21zfq5pDNM2pxFcxcrberbi/cW0nrugn/f0YsFjtv3rx5875pLhWCIN8PlAj/FQYwS5znbn0R7m00SEGm9082kxIlLeWvqtOSqlLfkov6allbK1vU/vriXm6FzvsKqTX1IX5+BmZmmXV1wusbvQXQNjDAfNXwAIIg3zOUCD+lr5Z1P22bi7mRc/qHSDoW5OsxOMz02jeJVSlJ1WlYDGYA0XmSzThHXTsFGfk927b9WFCtI1TZBcCeQhm0efOcoqIDDQ2ePB4AJAMs1tY+cfKkpLqAIIj4oMcwfcZip9m33z4oai6VdCDIF6unNd4ufLAuZtu4yBmX827qq+iusl1ocJf3aMGfB2esu3HhMo/HK83JseFwOm1o29oKANeTko6PGOFMJLoQiX/4+l5KSHBycpJEPxAEES90RvgZ2kpaoY4zf0s8cHzkXhymx9wfLbW4PF4BufBlZcrLqpQGWuMAorO/+bDNnquVZZWePX68ZOqoLY2N63k8MsCJtLRLJ044DhhQhcHAh1PGKpWUrHR0TE1Nzz94ILzEGoIgvRJKhJ/nbz4spjz+Qs71Gf3QUym+UywOK73uTXzlq4TKV6pyKgNJrsuc5ylR5ekddCs9KzlZOS6Xu3r27EcNDfy7/DQB9rS0bM7MlBk69BCBMKapSfZ9U3UAj5WUfvnwDh8EQXoxlAg/DwOYNQOWzL+/crCBuyleAivdIP+mjdn+siolofJVSs1rCw3TQQYDDvvtJqro3b9zZ27gKHMmU5nLTQeYtmSJf1CQDYvV6V73We3ta2JiJoaF+YSHL2psNObxXsvKntPUPHDxoqKiomS6hCBIt0OJ8D/RUdKa7zB9V9KBYyP2oAFSiaPQm+MrXz0vT8xpzHfUtfM0dP/JbZG6/D9L9MW/eLF39uxHZLImAACwAFbv2XO8vFytyyq96gBtbW2LVq8eGRR049Kl9Ldvrd3cYqdN67TaH4IgvRtKhP9VgMXw2PKES7k3p/UNlnQsUqqR1hRX8TKu/GVxc5kb0SnAYvivXmGMdsbdO3cOZu8ws7MbM3asmpra7xs2HH6fBQFAFmBvW5vj3bvKXRpMxGD6ubgAgKmp6aoNaDk9BJFSKBH+V/wB0gUPfhpk4GaqbvT5DRARqac1xpYnxJUnlLdUeRi4TrYd76rnIIuTBYCHUVEb58+fTCb3ZzLz5eV9NDTCz50rLy21/bAFWQATDIY0bNi2u3c30mj8M/p3AFu1ta9v2tT9PUIQ5LuCEuEX0FXWDnWc+Uv8nmMj9iiiR9iLWVMHJbY8IabsRXlrlafBgJn9Jjvp2ctg/z8u3dDQsGHOnGcNDfznmAQyGPNqa4fPmCGrpNQB0OkSXzOP9/exYwcNDZ3OnbPHYhsxmDYNjRMXLnz0IV8IgkgVlAi/zChz35zG/N8SD2wdvBYDaJER0WtlUmPLEp6VvSiilHoYuE7vN9FZz0EGi+NwOJHXrqc9e6aCxw8LDPTw8Lh769aMlha80LaaACGtrSlOThE1NQsZDEF5FoAyiaShobFlz54NO3e+e/dOS0sLPSYCQRA+lAi/2AqX0GVP1l/KvRFiGyTpWHoPOpueUJn8pDQusz7HnegcbD12gL4Tf/wTAKqrqycMGeJTXe3X1tYGcOD06ZOenmY2Nv2YzE7tmNDpHU5OV6urq4uLp7a1KQE8kZM7qKV16eJFfgVZWVkbG5tu7RuCIN83lAi/mCxOdtvgsIUPV/fRMHfRd5B0OD0bl8dNrcl4XBr7siqln5bNMBOvzZ5rug47L540aWdhoff7294Dm5o2PH1apKioqKAAdLpwzUJFRXNb2w3btkWcPLktMrKDRnPx8Ylbtw5NBEUQ5N+gxzB9pcz6nK3x4Uf9wvVVPv4UHml45su39LGg6V10acyzsnh9Zd3hpt5DjQcL7n+g0+lZWVlkMrlfv34kEqmtrc3PzOxlQ4Pw5mSAH6ytqRTKg7o6vfeFVQCj9fTiCgpEmPakZGUZ9HXtHdBjmL4OOiP8SvY6faf1nbDp+a4jfrvRsymENTc3FxQUODs7y8h85NtVT2uMLol9VPyMB7zhJt5H/HYTVfSEK0TdvLllyRI3JlOTydwtL282ePCanTt1sZ0XxSUA0NrbD129GhASMrK1tQ+Vmq+m9lhd/eilS+jkD0GQL4IS4dcLshr9lvzu14S9vwwOE57NKA1YLNadO3cy4uMN+/QZMWqUsbExADx//nz8mFmtbbJY0OZAqauT5cOnt/lpqYNNjyt/+ajkWRGl1MdoUNjAZX21rAGgvb09KyvLwMBAQ0MDAF6/fh0+f/7TpibBFJjTUVG/MhjlXe6FLwXQ09Pz9PKKLyx8+vRpSWHhYCurrcOG9fpTNwRBRA4NjX4TNpez+cUuOZzc5kGrsZgPzlp68ThMfn7+zFGjhjc0uLa11eJwEQTC5JUrA0NCLM0Hsjg3ANwBAIAji9lOJF6/mXbxftGT2JJ4hTquVo2Cv8vYCRMnYzCYlpaWtfPnZ8TG2gKUYzCKZmYHL1zYvXbt9MhIzw93N1hb28bHx+HOncXvJ4IyAULw+Fnnzo0ODBR3Z9HQaK8hDX1EQ6NfByXCb8XisDY834GXV1s/cCVW6Kmt336o2Gx2a2srgUAQLiwsLExPT5eXl3d3d9fT+/+gIpPJLCsrMzQ0VFAQ8Q2Ob968SYiLY9BoA7y8Bg4cyOPxBlpani0qEsy85ACMJhBazPsmp0zkwBJ+oaJure7gp7qeF4309Gof5Lk/fjuuuokDcENdPdvc/EZc3IShQ2e+fj2ZzebXfwWw2NBQTUXlVl6e+ocBLNTSmnH79um9eyvj44e1tbXJyj5QUJi9evXiNWtE29OPQomw15CGPqJE+HXQ0Oi3ksXJbvfaEBa7be+rw2vcl4jk5sKSkpLVs2ZV5ufjMZg6DGbuypU/rl7NZrOXTJ1aFhfnS6UycLjdSkpj581bv3MnhUIJCw1Ni4mxxGJLeDwLF5d9Z8/q6uo2NjZuXb486flzDJerTSRuPnTI3Z1/rgZFRUWZmZnq6uqurq6drqhRKBT+KCUAcDicpdOmVTx5Mo5MVuPxjhAI4X37hoWHW7S2Ct9/gANYTyaPbS/lwBCcQoe2W4Ku91NFvaqGRK+C3824Sk82FRaOff/MP8+WljPZ2T/OnEkoLhZkQQAYADCloeG2gkI9QKdEWIfF6uvrn75xo6ioKC0tTVVVdbmbm6amJiAIgogEr2fKzc21sbGRdBT/18Hq+PHRut+Tj3F5XH5Ja2vr1zVVX1/vSCS+xGB4ADyADoCfVFTWLVq0av78PxQU+IU8ADbAbHX1v8+cGWpvfxWHE5Tfx2DcLS0rKysdDQxuvS8vBBhCIERevtzW1jZt1Ch/be2dyspr8XhHXd2/T57k8XhkMnlxSIijjs5wXV17Xd2fV6yg0Wh/7NixUVlZ0DIP4LSc3Nhhw9arqwsX8gBKMECy62O1cKPHicl9V27XdE7C4NgAPAXMHCMVlU6V2QAmBMIBWdlO5fEAAYMGLVVTEy4sAPCwtBTZcfpyDAaDTqdLMIDu8dVf1x5EGvpIp9MZDIakoxA7kR9KlAhFpo3ZvvDhqvCkQywOm/clh6qhoSE+Pr64uJjL5fJ4vF/Wrv1LKLHxALgArlpadlpa3A8zRz2Ao4nJAg2NThllvYpKkK/vtQ8baQZwIBJnjB4dIScnKKQB+BEIMc+eDbK2viIjI0hU++Xlx/v4uJuZtX3YMg/AikCYoK0teFulo3RmvNWYP4Z5/j7CyH+KrFqzUF2aDNbAWVOT16URMzx+24cplgdwF2Dj0qXzgoImEQhPAF4DHJSTcySR3rx5I8bD9jkoEfYa0tBHlAi/TudZ6chXU5ZV2jf0Vwq9edXTn1sYrf9lEwqFMmvs2CBb22uBgWvc3b1sbTMzMzPi473fDyTyYQBcOBwCh9Np1FUboJlM9qBQOjU7qK0tJzU14MNG1AFIbHZBYuIModVYFAF2k8lbVqwYXFU18f1AJQ5gOYMhm51Na23t+sQGPRmZGi2tOEXZB16GyzZ5LN7q2aws03L27UGfXbTEJAx1DUAlABsgWRbjPmOqP1dBgfFhC80AWhoad5SUOpWfIxACpkw5ef364sjI6AULjgQGYnbufFFQYGdn9x9+lgiCIF8JXSMUJSVZxe1eG09l/r3w4eqNriv7qX5mKa+p/v5zU1OD3mest/X1k0aMMLOw6OhSk4XDkT9MbADQBoCTl2+VkQGhi20A0IrBYLBd7rwDYHA4Fl0K+wLUlZX5UKmdyoeSyTmamlQA4UvSHAymrY+63+Ypmyteqb5tdn5YrPOWekFReeWOHY6OjnVN7xbMWXgj0ofG6NAhaPx+eGtwcPAfO3eu27VrX1sb//4SFsBydfUlGzey6PQRW7b80tTUH6AMYDeBYBQYOHDgQADw8vHx8vH59I8OQRBEVFAiFDEsBrPAYYaJutGGhB1hHss9SK7/VjM7O1u5uDhIKL31AVja1BTt4nJVSelnGk1Q3g6QgsP1d3W9Gx09Rqj+70pKk2bMuBYRsbixUXAbIw/gPIHgOmjQo6iosUK337UB1MjIYLpMEq4CUFBSore0dCrvwOFchg795d69vW1tAFBioPrI0+DWIEMdGRUXI6d1g5dnJmekaSUbmZr+OHQof34NFos9de7EqXMftLNi/fpfKRSPiIghLBYHg4mRlZ22bNn0uXMBYICPz9Ht27fn5BgaG89bvnyYr+9nf7wIgiCiJ9qR1m7zHV4j7CSlLH38jVmnMs4z2Ux+yb1792bOmDVj+syoqCgej3f9+vWdSkqdrpNlAMwKCBjq4LBTWZkCwAVIA/AiEC6dO9fY2OhjZ7dcTe0BwA2ASQTC9IAAFou1++efAwiENIAOgCyACRoaYYsWVVZWOujrP30/46YSwF9D48KZM8Ps7dM+3OMSNbVNYWFTCYROVyW9tbWLiop+XDhzyET7wF0+/vt9R85ymjBxZEdHh6CP/32kvrGx8cmTJzExMc3NzSL/UYsVukbYa0hDH9E1wq+D7iMUFyqVypRh/5FyvKK1coVT6CSPmWUVMhzuNB5gZbDnDYgdh/787dnUqXubm4W3egpwb9as3SdOHPv999t//02lUi2trdeGh9vb2wMAj8eLiop69fixoorKkNGjPTw8+Fslvnx5fPv24qIiY2PjOevWDR02DAAqKys3LFyYm54OHI6qltbG/ft9hw8vKiqa4us7tr7ei0ZrATirqann53fkwoVZgYH4uLgNra26AKUA60ja6j+OVXTVLW4utVezVaqU0aApuQ/ydHR07NTHXn9jFrqPsNeQhj6i+wi/DkqE4iI4VHHlL7c83FUdr1l87TiH/s/d7rKYTa7OCbSKvNi6OuHb5iZpaCy+edPb21t8gTGZzEvnz2c+f47X1h4RHDxgwAAA4PF4FyMizh0/SNXjKrvq4kxVPY0GDDXxEn4W0if62IuhRNhrSEMfUSL8OigRiovwoVJWNzKcvELdJrfk8qyG5EHAwwCwZHEm168e2rFwYVhjoxOPVwnwO4FgOn783pMnuzlUCr0lvjLpeXliTmO+k579EGPPQSRXhS7PQupKGv6yoETYa0hDH1Ei/Dposkx3YLZhC078hLd9YzLhvHHQxYo7wfWJ3jye3Njx4x1dXf/cs+fC69dEI6OVCxd6Dh7cbVGVtJQnVaUmVqUUN5e5EZ0CLIb/6hX2X/IfgiBIb4ISYXfAYFgA7Obc/hm/hONts4x+uGIcdKk6So3BYRoaGm4/eLDbIqGxOjLqs5OqUl9VpwGAO8llat9gJ93+nxj/RBAE6d1QIuwOLg59UtJ2s2EjADTn2jXn2hEsN9lMJY6/MdOd6DLUeLCbvqP4UhGdTX/TkJtRl/26Lqu0pdxa09JN32n3kC0m6oZi2iOCIEgPghJhd4iOvWtl5tLY+IzFmw2AlcWclSOX3V+ZypXnxZW/vJp/+7fEA4MM3Jz17W00+xioEr9xd2wup6i5pKDpXX5TYQH5XSW1xppg4ahnF+o4s6+mFTr5QxAEEYYSYXdQUVGpqs+PiIi4eukq8CB4csjs2bP5HwVa+gda+jd2kJ+XJyZUJp/MON/B6rDWsrTR7GOgqq+pSNBUJGgraSrLKnVtls6mtzCoLYxWCr25tr2+srW6glpVSa2pb28wUCVaaVpYa1oGWvqbaZjIYtGBRhAE+Tg0a1RcvnpeE4XenNf0Nr+psKatvrGjqamD0khr4vA4stgPzuQYHCYWg1GTU1WTVyMo4HWVtQ3UiAaqRENVIlFFr3tO+6RhGh6aNdprSEMf0azRr4NOFL47Ggp4D5KbB8lNuJDOprO4HywoKoeTk8f18q87giBIN0CJsGdQkBH1g+cRBEEQAABAj2FCEARBpBpKhGLB4XAeP34s6SjELjY2tqOj6zOjepWioqL8/HxJRyFeTCbz2bNnko5C7J49e8ZgMD5frycrKCh49+6dpKMQr46OjpiYGNG2iRKhWFRVVS1fvlzSUYjdli1bcnJyJB2FeEVGRl66dEnSUYhXcXHx2rVrJR2F2IWFhRUVFUk6CvG6fPny9evXJR2FeOXl5W3evFm0baJEiCCf0kOnVSNSC31jvwJKhAiCIIhUQ4kQQRAEkWo99Yb6lJSUYcOG8Z+l9x1iMBgpKSmenp6SDkS8kpOTbWxsevdNyiUlJRwOx8LCQtKBiBGNRsvMzBw4cKCkAxGvxMTE/v37KysrSzoQMSoqKsJisaamppIORIyoVGpubu5//+M/bty4xYsXf7pOT02EbDb777//NjT8TpeN5vF4ZWVlJiYmkg5EvMrLy0kkEg6Hk3QgYtTS0sLhcAgEgqQDESMp+bqWlpYaGxtjMBhJByJGZDIZi8Xi8XhJByJGHA6nsrLS2Nj4P9Y3NTU1Nzf/dJ2emggRBEEQRCTQNUIEQRBEqqFEiCAIgkg1lAgRBEEQqYYSIYIgCCLVcFu3bpV0DL3Q8+fPnz17Ji8vr62tLelYRKmuri41NRWLxaqrqwsKWSzWw4cPk5KSNDU11dTUJBieSGRmZj5+/LisrExfX1/4MYRlZWW3b9+ura01NTXFYnvwf5A8Hi8vLy8mJiYtLQ0A9PT0BB+1tbXduXMnMzPTwMBAUVFRcjGK0ps3b969e2dkZCQoSU9Pf/jwIZPJNDAwkGBg366uri4pKan4PQ0NDcFRKywsvHv3blNTk6mpaS+YKNva2nrv3r2UlBQejyf4xory68pDRG3BggVWVlahoaE6OjoRERGSDkdkRowYoaioqKys/PvvvwsKWSyWt7f3wIED58yZQyAQEhISJBjht1u0aJGFhcXUqVOHDx+ura2dlZXFL3/y5AmBQJg7d66rq+vIkSM5HI5k4/wWtbW1lpaWISEhM2fO1NXVXbp0Kb+8qanJ0tJy1KhRkyZN0tfXLy0tlWiYolFcXKyurm5qaioo2bdvH4lECg0NNTEx+fnnnyUY27e7fPkygUDwfS8jI4NffuvWLU1Nzfnz59vb20+cOFGyQX67tLQ0XV3dESNGzJw5097enl8o2q8rSoQiVlBQoKysXF9fz+PxHj58aGBgwGKxJB2UaJSUlLBYLH9/f+FEeOPGDSsrKwaDwePx9u3bN2zYMMkFKAJFRUVcLpf/etasWdOmTeO/Hjhw4NGjR3k8Ho1GMzExefTokcRCFKmcnBwMBkOhUHg83s6dO/39/fnl8+bNW7JkiURDEwEul+vn5/fTTz8JEiGVSlVTU0tLS+PxeEVFRYqKinV1dRKN8Ztcvnx5+PDhnQq5XK6Njc3Fixd5PF5LS4u2tvarV68kEZ1osNlsS0tL/m+fsB07dojw69qDR3i+T/fu3fPy8uKPiPr6+lKp1IyMDEkHJRomJiYyMp2f5BwVFTVmzBg5OTkACA4OfvbsGY1Gk0R0omFmZiYYRyISiUwmEwAaGxsTExODg4MBQFFRcdSoUVFRUZKMUnRoNJqqqip/BDgqKorfRwAIDg7uBX08ceKEiYnJ0KFDBSXPnz/X1NR0cnICADMzs759+0ZHR0suQBFoa2t79OhRamoqi8XilxQVFRUWFv7www8AoKam5ufn16MPZVpaWlNT09SpU58/f56ZmSkoF+3XFT2hXsSqqqoEFx5wOJyenl5VVZWLi4tkoxKfqqoqOzs7/msikQgA1dXVvWBBspqamlOnTv39998AUF1dLScnJ7jcSyKR+FfXerSZM2eWlZUVFxffvHmTf32lqqqKRCLxPyWRSNXV1Twer+deXqqurt6/f//Lly9fvnwpKBT+9QQAEolUVVUliehEpr29/ciRI3l5efLy8vfv3zcyMqquriYQCIJrZj29j0VFRaqqqj4+PpaWlhkZGba2tpGRkVgsVrRfV3RGKGJsNlv4YMjIyLDZbAnGI24cDkcwcwSLxWIwmF7Q35aWlsDAwNmzZ/v5+cGHfQQAHA7XC/oYGhq6atWqgQMHbtq0iX8yIdxNHA7H5XK5XK5EY/wmixYt2rFjh4aGhnAhh8PpTb+ewcHBmZmZd+7cyc/Pt7W1DQsLgy597Olf146OjrKyskOHDl25cuX169dpaWm3bt0CUX9dUSIUMSKRWF9fL3hbV1fHP0/qrfT19QX9bWho4HK5Pb2/bW1tAQEBrq6uu3bt4pfo6enR6fTW1lb+27q6On19fckFKBoeHh5jxoy5dOlSSUlJbGwsfHgo6+rqdHV1e+4qstnZ2TExMY8ePQoNDT18+HBjY2NoaGhzc7NwHwGgtra2R39dBQcIh8NNnDiRfxVGT0+PQqEIkl9P/7oSiURZWVkPDw8AUFJScnNzy8rKAlF/XVEiFDEfH5/nz593dHQAQFpaGofDcXBwkHRQYuTj4/P48WMejwcAjx49cnJy6tF3UNBotLFjx1pZWR06dEjwb7Wenp61tTX/YhKXy33y5MmQIUMkGqbItLe302g0/iHz8fF59OgRvzw6OtrHx0eSkX0bAwOD06dP8+dSOjg4KCoq+vr6ysvLDxw4sLS0tKysDADIZHJaWpq3t7ekgxWNtLQ0/kMILC0tdXR0YmJiAIDNZj979qxHf13d3d3l5OT4hwwA3r17x+/mkCFDRPh1RYtui56fnx+PxwsICDh27Nj06dM3bdok6YhE49y5c4mJiQ8ePDAwMLCzs5s7d66bmxuNRrO3t3d3d+/fv394ePiff/45fvx4SUf69RYsWHDhwoWQkBD+qIuxsfGGDRsA4Pz582vWrFm9enVycnJOTk56ejp/flBPFBkZee3aNXt7exaLde3aNUNDw6ioKCwWW1ZW5uTkNHv2bBUVlT/++CMuLq53/A937969pUuXFhcX898uW7bsxYsXs2bNunLlirm5Of8ycA+1aNEiBQUFEomUlZV148aNBw8e8B/9duTIkfDw8BUrVsTGxtbV1b18+bJH3/m6adOm+/fvz5s37+XLl6mpqenp6UpKSqL9uqJEKHp0Oj0iIqK0tNTd3T0wMFDS4YhMbGzs27dvBW+HDh3KnxRDJpPPnj1LoVBGjRrFH8HouaKjo0tLSwVvtbW1x40bx38dGxv7+PFjbW3t2bNnC68n0OM0NzdHRUUVFBTIyMg4OTkFBAQI/kqWlpZeuHCBzWZPmDDB1tZWsnGKSnl5eUJCwpQpU/hvuVzu1atX+dMuQkJCuk6E7kFev3799OnTxsZGIpE4fpdhDRsAAArsSURBVPx44XlAjx49iouLIxKJs2fP7gWPYLx9+3ZSUpKxsfG0adNUVFT4hSL8uqJEiCAIgki1Hny+jCAIgiDfDiVCBEEQRKqhRIggCIJINZQIEQRBEKmGEiGCIAgi1VAiRBAEQaQaSoQI0sNcv349OTlZ0lF8XFtbG51O/+rNaTQa/4kfCNKdUCJEkB5mxYoV3b8eSlJS0saNG0eOHGlhYTFy5MiuFW7cuGFjY6OqqqqoqOjh4fH69WvBRw8ePDD/mKdPnwrqxMTE9OvXT1lZWVFR0d/fX7CkFoJ0gx68qgKCSKe1a9daWVl1805PnTp1/fp1Jyen9vb2ysrKTp/eu3cvODjY19f3wIEDLBbrl19+GTZs2OvXr42NjQHA1NR0wYIFwvXPnDlTVlYmWBMrOzs7ICBg4MCBhw8fbm5uXrlypZ+fX0ZGhuBZQggiXt/yVF8EkR719fVNTU0f/YjBYNTX139iWzabXVNTQ6fTBSV1dXUtLS2f3SmTyaytraXRaP8lwqamJuFdCGOxWDU1Ne3t7V0/YjAYNTU1n90FhULhcrk8Hs/Ly6tv376dPh08eDCRSBQ0Ul9fr6KiEhoa+tGmWlpalJSUJk2aJCiZOHGiiopKc3Mz/y1/weiuDyVHEDFBQ6OIVHv27BmBQOA/h0hg165d+vr6zc3N/LfHjh0zNDTU0dHR1NS0s7OLi4sT1Dx79my/fv3k5eV1dHTU1NSmTJlCoVAEn/r4+MyZM+fAgQM6Ojr6+vpnz57l8XgbNmxQU1PT1dVVV1cnEAh79+79aGCVlZUBAQGKiop6enpKSkp9+vRJTU3lf+Ts7CxYyf306dMEAiElJWXAgAGampoqKirDhw9vbGwUtNPe3r506VJNTU19fX1lZWUrK6v4+Hj+R1QqdcGCBQQCQV9fX01N7Ycffqirq/u3HxQej//EU0+zsrIGDRokOIHT1tZ2cHC4ffv2RytfunSJRqPNmTOH/5bH4z148MDPz0+wgquXl5euru6dO3f+bXcIIlooESJSzcfHB4/HnzhxQlDC5XL//PPPIUOG4PF4AAgPD1+yZMn06dNTU1OTkpLMzMz8/f3z8/P5levq6hYvXpyUlJSbm7t///7o6Oi5c+cKmmptbb13796pU6f+/PPPhIQEb2/v06dP7927Nzw8PD8/Pzs7++jRo/+2fvf8+fPfvXt3//79oqKiV69eLVy4kPd+WWD+2ST/NZ1Op1AoISEhU6dOTUlJOXLkSHx8/M8//yzoy5gxY06dOrVhw4b09PRXr14tWLCgvb0dADgcTkBAwJ07dw4fPpyTkxMZGfnmzZuAgAAOh/MVP0YsFttpQw6HU1tb29DQ0LXymTNnDAwMhg0bxn9LoVCoVKqdnZ1wa3379s3Nzf2KSBDka0j2hBRBJG7Xrl1ycnKCsc27d+8CQGxsLI/Ha25uVlZWXrp0qaAynU43MjJavHjxR5s6fvw4BoNpa2vjv3V0dFRQUKioqBBUCA0NtbW1/S9RaWlpbdmy5aMfkUikJUuW8F8fPnwYAI4dOyb4dN68ebq6uvzX/HOy48ePd23k2rVrAPD06VNBycuXLwEgOjr604F9dGjU29tbS0tLMNhbUVHBPzvMzc3tVJP/VFXhrvFLDh48KFxtwoQJKioqn44EQUQFTZZBpN28efN++eWXv/76a9WqVQBw4sQJKysrLy8vAEhISGhvbyeRSE+ePBHUNzExyc7OFrxNTk6Ojo6ura3lX4fj8XjFxcWC8xtXV1fhh+M4Ojr++eef06ZNmzp1qre3t5KS0r9F5ejoeOjQIQ6HExQU1L9//08/T87f31/w2tbW9vTp0wwGQ15e/vHjxzgcbtasWV03iY6OVlRU5HA4gq7xeDxZWdns7Ozhw4d/6uf1MevXrx81apSvr++yZctYLFZ4eLiCggL/8dSdnD59GoPBzJgxQ1DCP5Xs1EEZGZmvOzdFkK+AEiEi7bS0tMaPH3/ixImffvqpqqrq/v37e/bs4V8P418z27VrV6c/02ZmZvwX8+fPP3v27NChQy0tLTU0NPijjoJxSwDQ1dUV3nDevHlNTU0nTpy4cOGCgoKCv7//3r17Ba0Ji4iIWLNmzf79+7dv366npzd37tyff/5ZXl7+o13Q0NAQvJaTk+PxeCwWS15evrGxUVtb+6Nb1dXVMZnMSZMmCRfyZ6x86of1L0aMGBEVFbVnz54VK1YoKChMnz69tbX16NGjnbrPZDIvXLgwbNgw4S7r6+sDAJlMFq7Z2Ngo3CkEESuUCBEEFi1aNHjw4Li4uLi4OBkZmWnTpvHL+Rfwbt265ePj03WrsrKyU6dOHT58+Mcff+SXREZGXrhwQbhOpwyKw+E2bNiwYcOG/Pz8hw8f7ty5c/To0R+9GKavr3/+/Hkmk/nq1asrV67s3LkTi8Vu27bti/qFx+ObmprYbHbXx8+qq6urqak1NTV9YgrMF/H39xc+MR08eLCFhQWBQBCuc/v27YaGBuHLqACgpaUlLy9fWFgoXFhYWNinTx+RBIYgn4UmyyAIeHp62tnZHT9+/OzZsxMmTNDW1uaXe3h4yMrK8i+ndcV/lr2zs7Og5P79+/9xj9bW1itWrFizZk1eXp7wGWQncnJygwcPPnz4sKura1JS0n9sXMDLy4vFYt28ebPrR97e3hQK5fHjx1/a5n/x8uXL+Pj42bNndyo/c+YMHo8PDAwULsRisT4+Pg8ePBCsKZOZmVlaWjpixAhxxIYgXaFEiCAAAAsXLrx69WpZWZnwrd96enrLly8/fvz45s2bS0tLOzo6CgoKDh06FBERAQDW1tby8vJ79uxpaGggk8l79uyJjIz89F527Nhx8eLFyspKLpf79u3bW7duWVhYdJ04ymAw5s6d+/z5cwqFwmQyo6Ojc3NznZycvrRTwcHBDg4Oixcvvnz5MoVCaWhouHHjBn9SzNSpU+3s7GbOnHnlypWmpqbm5uaUlJTVq1fn5eV9tKmSkpJr165du3atoaGhtbWV/7qgoID/aV5e3oEDB9LT0wsLCyMiIoKCguzs7FauXCncQmVl5ePHj6dNm9b1NvmwsDAymRwaGlpdXZ2Xlzd//nwtLa1O9+AjiBhJeLIOgnwfWlpalJWVbWxsOpWz2ext27apqakJfmWMjY2vXbvG//T06dPKysr88v79+587dw4AXrx4wf/U0dFx4sSJwq2tXr1aOA04OjpmZmZ2DYbBYPTv318waMkfrRXcrt511qjwvfn8EiqVyn9bW1sbEBAgaAqPxz98+JD/UV1d3fjx4wWDt1gs1t3dvbS09KM/n9OnT3f967F7927+p2lpaSoqKvxCHA4XFBTUdYUB/rhuenr6R9s/c+aM4Idsbm7+6tWrj1ZDEHHA8N7fnIQg0qysrMzc3Hzfvn3Lly/v+imLxcrLy2MwGEQikUQiCX9EpVILCwtVVFT+4zUtJpNZXFzc2tpKJBKFJ5R2RSaTKysrORyOqakp/6ZGPi6Xi8FgvujaXl1dXVlZmYqKioWFhZycnPBHzc3Nb9++VVRUNDQ0FN7Ll2KxWIWFhW1tbebm5pqaml/RQkdHR25uroKCgo2NzadnySKIaKFEiCAAAAsWLLh27VpZWZnwyR+CINIAzRpFpN3GjRsvXrxYWlp6/PhxlAURRAqhM0JE2j19+pT/JISvmI2CIEgvgBIhgiAIItXQFWkEQRBEqqFEiCAIgkg1lAgRBEEQqfY/+mtPYFvU89AAAAAASUVORK5CYII=", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "scatter( pop'/1e6 , title=\"population of UK\", label=\"testing data\", xlabel=\"years since 1970\", ylabel=\"/millions\",color=\"red\")\n", "\n", "println( \"training error: \", norm( p_interp.(r) - y/1e6 ) )\n", "println( \"testing error: \", norm( p_interp.(1:54) - pop'/1e6 ) )\n", "\n", "scatter!( r, y/1e6 , title=\"population of UK\", label=\"training data\", xlabel=\"years since 1970\", ylabel=\"/millions\",color=\"blue\")\n", "plot!( p_interp, -5, 60, label=\"model\" )" ] }, { "cell_type": "markdown", "id": "c5d86d53", "metadata": {}, "source": [ "Here, we can see that indeed the \"model\" does not capture the correct behavour outside the *training data* (i.e. the data points we used in order to derive the model in the first place).\n", "\n", "Instead it may be useful to \"fit\" the data using a low degree polynomial, for example. In order to do this, we set up a (overdetermined) linear system of equations $A \\bm x \\approx b$ and try to minimise the error in this approximation. First suppose that the data can be decribed by the linear function $y \\approx p(t) = c_1 + c_2 t$ where $p$ is the population at time $t$. Suppose we have the data points $(t_1,y_1),\\dots,(t_m,y_m)$ and notice that we want\n", "\n", "\\begin{align}\n", " \\bm y = \n", " \\begin{pmatrix}\n", " y_1 \\\\ y_2 \\\\ \\vdots \\\\ y_m\n", " \\end{pmatrix} \n", " %\n", " &\\approx \\begin{pmatrix}\n", " p(t_1) \\\\ p(t_2) \\\\ \\vdots \\\\ p(t_m)\n", " \\end{pmatrix} \n", " %\n", " = \\begin{pmatrix}\n", " 1 & t_1 \\\\\n", " 1 & t_2 \\\\\n", " \\vdots & \\vdots \\\\\n", " 1 & t_m\n", " \\end{pmatrix}\n", " \\begin{pmatrix}\n", " c_1 \\\\ c_2 \n", " \\end{pmatrix}\n", "\\end{align}\n", "\n", "In order to solve this equation approximately, we may again use the ```\\ b``` operator as we did in @nte-example1:" ] }, { "cell_type": "code", "execution_count": null, "id": "31bdfa9d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training error: 3.206666526918118\n", "testing error: 10.088011997522381\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1gU1xYA8LON3qt0KYp0lCg27BXFLnaxxBKNMUYTe4uJ3VhRsWPBgqKiYsVCxIYISEdApfe+y/Z5f8zLZrMgArIssOf3ve99cOfOnTNg9nBnbqEQBAEIIYSQvKLKOgCEEEJIluiyDgChtunatWshISE//PDDd9991yQNLl26VCgUHjx4sElaa1oFBQVXr15NTU1lMpkuLi6LFi2SdUQINQD2CBGSioiIiFOnTn38+LFBZ1VXVx87duzGjRs1D50/f/7cuXNNFF1TysjIcHZ2Xrx4sa+vb2BgYHh4eK3VgoODKRRK//79az3avXt3CoXy8OFDUYmZmRmFQklKShKvRhDEihUrKBSKkZHR+/fvm/AukDzDHiFCLUhFRcWCBQvc3d3HjBkjccjDw0MgEMgkqrr5+fnl5+dv3Lhx48aNFApFehcSCAQLFy48ceJE+/btHz58aGNjI71rIbmCiRCh1qHWbmJLkJycDACTJk2SahbkcrkzZsy4cuVKp06dHj58aGpqKr1rIXmDiRC1YsnJyVVVVc7OzgRB3L9/PzU1VVNTc+jQoSYmJjUrV1VVPXr06OPHjwwGw9XVtWfPnlTqf14NxMTECIXCzp07V1VV3b17NyMjo127dp6entra2uLV4uLiOByOm5ubROPJycm6urrt27evI+Cqqqrw8PCMjIzy8nITE5N+/foZGRmJjubn55OP+5hMZmRkJFkoajMmJgYAXFxcxBskCCIiIuLt27dsNtvc3HzQoEFaWlriFbKysvLz862srLS1td+9e/fixQuhUNitW7fu3bvXEae4goKCR48e5eTkaGho9OzZ09HRUXQoOzs7Ly8vIyMDAFJTU1ksFgDY2dmpqKjUs/F64nA4kyZNunnzppub2927d/X19Zu2fSTvCIRarV69egFAaGhohw4dRP+klZSUDh8+LFHz2rVrenp64v/yXV1dU1JSxOsYGBioqKiEhYWJf85qaWkFBweLV7OysqJQKBLt//333wDg4+MjKlm5ciUAXLlyRVSyYcMGRUVF8RgUFBQ2btwoqrBz586a/4XOnj2bPKqjo6OpqSl+0aysLPInIKKpqXn69GnxOitWrACA8+fPe3t7i9ecPHkyn8//6k/4zz//VFJSEj9x9OjRZWVl5NHVq1fXDPjt27e1NnXz5k0A6NevX61H3d3dAeDBgweiErLPl5iYWFlZOXDgQADw8PAoLy//aswINRQOlkGt3owZM2xtbSMiIjIyMs6cOaOsrLx48eI7d+6IKjx79szb25vJZO7evTspKSkyMtLHxyc6OnrgwIGlpaXiTfF4vPHjx48ePfr9+/cfP37cs2cPi8WaOHFiXFzct8dZWFg4d+7c4ODguLi42NjYU6dOGRkZbd68WTQExtvb+8qVKwBAPv0jkZmspurq6iFDhoSHh48fP/7169cpKSmHDx8WCoVz5swJCgqSqLx+/fqoqKgLFy68e/cuICDAxMTk0qVLp06dqjvgvXv3rl27VkdH58KFC6mpqc+ePevTp8/NmzfHjRsnFAoBYM6cOQ8fPnR1dQWAc+fOkQGL/1Hy7UpLSwcPHhwaGurp6Xn//n0NDY0mbByh/5N1Jkao8cj+kIODA5fLFRVev34dAJycnEQl5ASGI0eOiJ/r5eUFAOvXrxeVGBgYAMCIESPEq5G9tHHjxolKGt0jrCk5OZnBYLi5uYlK8vLyAMDd3b1mZYke4YEDBwCgd+/eAoFAVEjmUSsrK1EhmUcNDAxKS0tF1e7evQsAQ4YMqSO28vJydXV1CoUSEREhKmSxWFZWVgBw8+ZNUeGAAQMAID09vY7WiMb2CA0NDQFg0qRJ4r9ihJoW9ghRq/fTTz8xGAzRt6NHj+7QoUNsbOyHDx8AIDMz8+3bt4aGhnPmzBE/a9WqVQBw7do1idaWL18u/u3ChQtVVVXv3LnD4XCaPPKOHTt26tQpOjqay+U29Fyy2/fbb7+Jv+kcP358x44d09PTo6KixCvPmzdP/N3hwIEDaTRa3VM7Hj16VFlZOWjQIPF5kMrKykuXLhVdvRkUFhYCQKdOncR/xQg1LUyEqNWTGD9CoVDIkvj4eABISEgAAAcHBwUFBfFqXbp0IaepScxJkGhNXV3dxsaGw+GkpqZ+Y5xcLnf//v29e/c2MTGh0+kUCoVCocTGxgoEgrKysoa2Rt5Xly5dxAupVGrnzp3hn3sX6dixo/i3DAZDR0eH7H1+SWJiYs32AYAcJSTRvvT4+fmpqalt3rz5999/b54rIjmEo0ZRq1dzDCH5kLOyshIAqqqqRCXilJSUNDU1y8rKmEym6M0TnU6XGCMq0VqjEQQxduzYkJAQCwuLUaNGGRoaKisrA8DRo0c/ffrE5/Mb2uCX7ot8ligRbc1hnFQqlahzneEGtV8fNBoNANhsdq1Hq6urRXXE9e7d++7du8OHD9+4cSMAbNiwoaHXReirMBGiVq+goIB8cSWSn58PAGR6U1dXJ+tInFVdXV1eXk6j0dTU1ESFfD6/pKREV1f3S60BAPkoUigUij+TZDKZdQf55MmTkJCQXr16PX78WLxvevLkyXrepgR1dXUWi5Wfny8xo47s5337oJIv/dwa3T55Sk5OTq1HyXKJuR+k3r17h4SEeHp6khP2169f39BLI1Q3fDSKWj2J92FCoZAsIWe8kf8fGxsr8ZIvMjKSIAh7e3uJ2YQSrVVUVKSmpiopKYnWMWnXrh1BEBIZgnxQWYfo6GgAGDdunHgWLCkp+fTpk3g18k1YfTqI5H29fftWvFAoFJITEJ2cnL7aQt0cHBxqtg8AERERoqs3iL29PYVCycnJqfkcOD8/v7i4mE6n29ra1nquh4dHSEiImprahg0btmzZ0tBLI1Q3TISo1Ttw4ID4YJOgoKD09HRXV1dra2sAMDY27tmzZ2FhoXjfiyCIrVu3AsDEiRMlWtu9e7f4M8PDhw+zWKxRo0aJEpilpSUAkAMvSUwmkxzDWQfy+S0591xky5YtPB5PvERbW1tZWTk7O5ucn1CHCRMmAMCuXbvE33Fevnw5LS2tY8eOEm86G4Gcm//48eM3b96IClks1v79+6G2n9tX6erq9uvXj8/n7969W+LQ9u3bCYIYNmyYqqrql04Xz4V//PFHQ6+OUF1kOGIVoW9ETp8wNzcfPHjw06dPk5KSjhw5oqGhQaVSxQfih4eH0+l0RUXFP//8MyYm5u+//540aRIAWFpaik/QNjAwYDAYRkZG06dPf/36dVxc3B9//MFgMJSVlZOSkkTVyBmKmpqavr6+z58/9/f3t7OzIyfP1TF9Ij09nU6nKygo7N69OzY29s2bN4sWLVJWVjY2NgaA7Oxs0YkeHh4AMHHixH379vn5+T19+pQsl5g+wWazyWzn5eX1+PHj2NjYPXv2qKqqUiiU27dvi6qR0ycCAwMlfnSGhoZqamp1/3h9fX0BwMDA4NSpU3FxcXfv3iXXoxk2bJhQKBRVq+f0CYIgIiIiyCUFpk6deu3atadPnwYGBpIZXVVVNS4uTryyaEK9eGFYWBj5KHvLli1fvRxC9YSJELViZCIMCwuzs7MT/W2noqJy5swZiZp37tyRWHetZ8+eHz9+FK9Drizz6tUr8WXP9PX1xXMqaeXKleIPVL28vMgOYt3zCE+dOiW+sgy5Zg2Z9sQTYUJCgru7u6j9OlaWycvLGzx4sPhN6enpXbp0SbzOtyRCgiD27t0r/g6VQqFMnTq1srJSvE79EyFBEM+fPycfuopzdXUVn61IqjUREgTx7NkzsuP4xx9/1OeKCH0VhcAd6lGr1bt37/Dw8KysLENDw2fPnqWlpWloaAwaNEhiNTUSh8N5/vx5amqqoqKii4uLq6urxCLRhoaGVVVVTCazuro6NDQ0OzvbwMBg0KBB5LARCSkpKeHh4UKh0NXV1c3Njc1m5+TkqKuri4awFhcXl5SUGBkZiSeS/Pz8V69e5eXlmZiY9O/fX1VVNScnh81mW1hYSAyY5PF4eXl5PB5P1GZ6ejoASAwLAoD4+Pi3b99WV1e3b9++T58+EgNEi4uLy8vLDQ0NJZ46fv78mSCIuldGJZWVlT179iw3N1ddXb1Hjx41A8jNza2urjY3N6fT6zX4jiCI2NjYmJgYJpOppqbm6urq4OBQc8HujIwMPp9vZmZWcwZhfn4+OTrJ0tJSqit9IzmBiRC1YqJEWOsq2w0lSoTf3hRCqBXBwTIIIYTkGiZChBBCcg0n1KNWbOHChV5eXk21I8G6deskJjMghOQBviNECCEk1/DRKEIIIbmGiRAhhJBcw0SIEEJIrmEiRAghJNcwESKEEJJrmAgRQgjJtRaaCJOSki5fvizrKL7iqxvltBl4p22P/MybkpM7JRePlnUUzUEad9pCE2FUVNTNmzdlHcVXyM+ilHJypwRBsFgsWUfRHIRCYXV1tayjaA58Pp/NZss6iubA5/PFd+Vsw7hcbpMvfNFCEyFCCCHUPDARIoQQkmuYCBFCCMk1TIQIIYTkGiZChBBCtausrFzz44/dLS2/MzHx6t799evXso5IKjARIoQQqkVFRcVAV1fb48eff/r0Nidn9+vXazw9L589K+u4mh4mQoQQQrU4tGPHvMxMHy6X3LfWFuBmScnWlSsFAoGMI2tqmAgRQgjVIiwkZPR/Z+ypATgLhcnJybIKSUowESKEEKqFQCCg1yikEwSfz5dBNNJU8zZbsTt37mzcuLHZLicUCqlUufhLov53SqVSL126ZGVlJe2QEELS1q1fv4cJCZPEHoRyAaIoFFtbWxlGJQ1tKhEmJyd36tRp2bJlsg5Efs2bNy87OxsTIUJtwNJ164YFBenn5AwgCAAoBvhRS+v75csVFRVlHVoTa1OJEAAMDQ3d3NxkHYX8UlNTk3UICKGmYWBgEPzq1ap5836LjlYgCFBVXb516/hJk2QdV9Nra4kQIYRQUzE1NT1/9y4A8Hg8BoMh63CkRS5ecSGEEPoWbTgLAiZChBBCcg4TIUIIIbmGiRAhhJBcw0T4r5KSknVr1nQyN6dRqQwarYut7d6//uJwOLKOC/h8vlAolHUUCCHUNmEi/L/ExESXTp3C9+7dmpmZRBCxQuGSlJRT69b17NKlqKio0c1++PDhzZs3DT0rOzv76dOnom9nzJhx9OjRRscgISQkpFevXnVUCA0NzcvLa6rLIYRahfDnz3+YONGrW7effXwSExNlHU6zwkQIAMDhcEYNGTK5pOQxmz0OoANAJ4DZAG+rq83S0qZPmNDolu/evXvw4MGGnvXmzZtNmzaJvl22bNmwYcMaHUNDrVmzJioqqtkuhxCSuXU//bR79Gifq1ePR0SMPHt2YZ8+pw4flnVQzQfnEQIABAQEMIqLtwsElP+WKwKc5HCsXr58/fq1u7t7Q5vNzMy8detWbm7uqlWrDAwMfvnlFwC4ffv2vXv3GAzGjBkzunTpAgClpaW+vr7JyclaWlpjxozp1q3buXPn0tPTV61apaiouHnz5oyMDAqFYmVl9ebNmw8fPmhrawcGBpqami5fvlxLSwsA2Gz2/v37ExMTBwwYoKGhoaGhMWDAAIlgrl+/fufOHXNz806dOokKr1y58vz586qqqm7dun3//fd0Oj04ODgzM/P06dPPnj0bOnRonz59zp8///r1ax6P5+HhMX36dDlZVQ4h+REZGRkTEBBcUkJ+ALYD8Cgq8ti0yWviRH19fRkH1yzwQw0A4OHt2xOqq2m1HdIFGEylPnz4sBHNqqqqmpmZ6ejouLm5OTg4AMD27dt///33gQMHdu7cefTo0W/fvgWAWbNmZWdn+/j49OnTJzMzk8FgWFtbq6uru7m5ubq6AsC1a9ciIiIAIDo6+tdff71+/frYsWMTEhJmz55NXmjKlCmvX7/29vZ+//79ggULXrx4IRGJv7//8uXLhw4damBgsHr1alH5ixcv+vXrN27cuBs3bixduhQAzM3NVVVVO3To4Obm1q5dOzabHR0dPXTo0JEjR/r5+f3xxx+N+DkghFqykMDA2cXF4t0ARYBxVVWPHz+WWUzNC3uEAAB5WVn9v3zUgs3Ozc5uRLM6Ojqurq48Hm/ixIkAwGKxtmzZkpKSYmJiAgAVFRWHDh06c+ZMcnLy7NmzBw0aJDqxZ8+eERER5Fk12zx27BiFQnFxcXFwcCAIIj09PTQ0NDc3V1VV1dPTMywsrOZZO3fu3Ldv36hRowAgKyvryZMnZPm+fft4PF5+fv6mTZtGjBjh6+vr6uqqo6PTu3fv4cOHk3X27t3L5XLz8/NXr17922+/bdiwoRE/CoRQi1VZXKxdo1Cbw6koL5dBNLKAiRAAQENTs45feBmdbqCl9e1XSUtLY7PZffr0Ib9lsVg2NjYAsGXLlgULFqxevdrT03PZsmWmpqZ1NGJra0uhUADAwMCAyWRyOJz09HRLS0tVVVWygpOTk8QpBEGkpqaSnUsA6Ny5M5kI+Xz+/PnzQ0NDraysqFRqSUkJm81WUlISP7e6unr69Onv3r2zsrLicrk5OTnf/nNACLUodt26vTl/vj+bLV74RktrrqOjrEJqZvhoFACgW9++of9NACICgCcMRrdu3RrXMoVCIQiC/FpLS0tBQSEpKSktLS0tLS03N/fvv/8GgIkTJ+bk5Jw6daqoqIjsh5GprlY1X9Hp6uoWFhaKrlJQUFAzBg0NjYqKCvLbsrIy8ovg4OCEhIT09PQnT574+/sDgKgRkTNnznC53I8fP4aGhu7bt69mBYRQa+c9deoVff0IsZKbVOonM7MePXrILKbmhYkQAMBn1qy/CSKktkN7KRTQ0hI9J2woXV3d7OxsMn+Ympo6Ozvv2LGD/JbszAFAYmIijUbr0aPH0qVLyS6Xrq5ubm5uPXe/dHZ2VlVV9fPzIwgiPDz80aNHNesMHTqUnIDB4XBOnz5NFjKZTDqdTmbWffv2iSrr6ellZWWJ6pBrDAqFwgMHDjTuh4AQaslUVVUDnz7d0LXrMAODH/T0+ujrXxs+/PKjR3X8Rd7GYCIEADAxMTly/PhEBuMvCoX5T2EhwAoabZOCwrnAQKUv9Be/auTIkTQazdjYuEePHhQK5dKlS6GhodbW1m5ubjY2NuQjyilTptjY2PTs2XPMmDFkQurRo4ejo6OFhYW5uTkA0Ol0Gq3WoTxAHg0KCvL392/Xrt3u3bu9vLxq7oW0Y8eOly9f2tvbu7i4OP7zuGPs2LF8Pt/W1tbBwUFBQUFUedmyZbt37zYwMNi7d+/MmTOTk5OdnJzs7e3btWvXuB8CQqiFs7Kyuvvmjf/793NCQoJTUs7evq2npyfroJoRITV8Pj88PPzGjRuJiYmiQjab/fTp01u3bpH9pC8JCAiYMmVKQ6+4Z8+eX375pTGxEgRBEPfv33e0tlak0RxUVTupqtIolH7u7jExMY1u8EsqKyuzsrJ4PJ6opKSkJCMjg8vlfmPLAoHA0dHx7t27tR7NyclhsVgShVlZWeXl5XW3mZmZWVVVVZ8APDw8wsLC6hltSyMUCisrK2UdRXMQCARMJlPWUTQHHo9X8998m8TlctlstqyjaA5sNpvD4TRtm9IaLJOfnz9s2DAej9ehQ4e4uLjHjx+bmZllZ2d7eHhYWloaGxv7+Pjs2bNn1qxZUgqgEYYMGRKbmpqYmJiSkkKj0VxcXMzMzKRxITU1NYlOm7a2trZ2zXFb9bV///6PHz/q6+uHhobq6+sPGTKk1mpGRkY1C8khrHWgUql1j99BCKFWTVqJcP78+d26dTt69Cj5lJlcKvPUqVMdOnS4f/8+AFy8eHHdunUtKhGS7OzsLCwsqFRqox+HNr/Jkyc/efKkpKRk5cqVgwYNwjnvCCFUf1JJhCUlJbdv387MzExKSiKnh5MfzaqqqqJ3XTQaTTTiv4XIz8//44/tFy8GFhdnA4Cpacf582csX/6LiopKc4bBYrFoNJqiouKXKlRUVKioqNDp//7uDA0NJ0+e3LjLsdlsoVDYzPeIEEIth1QSYXp6uoqKio+Pj1AozMjIsLS0DA4OVlJSWrhw4bt37zw9Pdu1axcXF3fixIkvtcBkMjMyMi5fviwq6dev31df3n7LFg0xMTH9+g2trv6OwzkB4ALAy8p6tXXrrjNnLoaHhzZ6nEhcXFxhYWH//nXM15f0ww8/dO7c+eeff/5ShV69evn6+ormI36j/fv3p6en+/n5fanCqVOnJk2aVP+/WoRCoUAgaJLYmhlBEAKBoJUG3yDk70ge7lTwD1kHInUCgaD1/qfXIAKBgEKh1P9OqVTqV4e/SiURVlVVVVVVjR8/fuHChVwut3v37n5+fkuXLk1JSXn9+vXUqVMNDQ3fv3//8OHDL83PKy8vz8jIuHLlCvktjUazsrJSV1ev+7r1nG9QU3V19dChoysq5guFv4sVm7PZ47Kypo8bN/XFi0YuNfT48eOIiIgGJcIVK1ZoaGjUUeHo0aP29vaNi6cRlixZMmTIkHomQoIguFxuS9i7qhEIguBwOOR0kbZNKBRyOJw6hiK3GXw+n8fjycPLAh6PJyebtXE4HPH52V+lpKQkm0RIDsog594pKCgMGjTo3bt3ALBlyxZvb+/NmzcDwNChQ21tbRctWlTrIBFjY+PevXsHBAQ06LricwAa5Pz58xUV6kLhphpH6Fzu0chIy/Dw8Lq3LqpVzUW3Dx482KNHj6tXr3769OnSpUu3bt26c+dOeXl5p06dfv75Z01NTQBISEgwMTGxsLCIjIyMi4vT1NS8fPmyoaHhmjVrDAwMAOD169fGxsba2tpkPzslJSUsLMzJyenXX38l32vm5ubu2rUrLy9v0qRJeXl5Hh4eEolTIBAcOHDgzZs3nTt35vF4ZGF1dfWxY8ciIyMpFMqgQYOmT59OoVCOHz/O4/G2bdumrq7u4+NjZGR07Nix9+/fKygojBw5cty4cRK3TKFQlJSUWumDVnL8WCsNvkGEQiGVSpWHOyUTobKysqwDkToyEdbxSqXNoNFoFAql0Z/2tZLKH0rW1tYmJiYZGRnktxkZGeSjRT6fL/pzm8FgCASC+md1qQoJCa2uHv+Fn4YWhTIkNDS0Ec1qamra2tq2a9du0KBB5BoNZ86cmT59urW19ZQpUwAgPj7e09Nz8eLFeXl5Y8aM+SeYEHIx7tjY2F9//fXRo0dz5swpKSmZMWMGWeH06dOZmZkAEBoaOnv2bCaT+f3339+/f5/cuYnD4Xh4eJAPom/cuLF69eoPHz5IBLZs2bLg4OB58+ZRqVTRLlFlZWWVlZWzZs2aMmXKgQMHyOnzbm5uVCrVw8Nj0KBBenp6eXl5FApl3rx5Y8aMWbt27aVLlxrxY0EIoRZFKj1COp2+cuVKcv3MtLS0Bw8ekJ/sM2fOnDt3rqampoGBweHDh728vHR0dKQRQEPl5BQADPzSUQ7HNCenMRvVamhodOzYsby8XHxB7fnz58+bN4/8etWqVdXV1fn5+StWrHB1dS0qKpJ4D6qrq3vw4EEKheLs7Gxubk7+IS9eoW/fvitXrgQAoVC4ceNGALhz546GhsbWrVsBwN3d/datWxJRsVgsPz+/Dx8+mJubDxgw4OXLl2S5kZHRunXrSkpKysrKfvrpp2PHji1durRLly40Gq13797kDAp9ff1OnToVFhZWVlbOnz//6tWrjR6kgxBqfkKh0P/48aPbtwtYLGAwBo0atXbHjq++dWrzpDV9YsmSJWZmZg8fPtTT03v37l379u0BYPz48e3atbt161Z6evqcOXNEXRyZ09bWBCj70lEGo0RHp5YZeI0j/pRy+fLlQUFBnTp1UldXFwgEubm5EonQxsaGfLqtp6fH5XKZTKbEP9kOHTqQX+jq6paWlgLAx48f7ezsyEJFRUVyXW9xmZmZKioq5Jo1AODs7Eyu61ZYWDh27Fgmk2lubs5isWrdpP7Tp0/jxo2j0+nGxsbFxcUtpEOPEKqnX+fP5125ElpZqQYgBDhz8qTn06ePY2Lk4dV4HaS4+8SYMWNEj/tEevXq1YiXbdLWv3/3sLAH1dW/1naQT6c/7tHjUONarvlSVzTtISoqKjAwMCUlRUlJSSAQqKur18wrX33JX/MlsL6+viiHEQSRm5srUUFbW7uqqorL5ZIP2UtKSshyX19fBwcHcvhoSEjITz/9VPMS27dvHzly5O+//w4Ap0+frmPcL0KopcnMzHx78+azykryWyrAHC73c0bG5YCA6T4+so1Nttr+YKr68PHxIYjXANdrHqJSt+vpKQ4dOrRxLevr63/+/LnWkb5cLlcoFJIDvQ4cOFBdXd24S0gYPnz4u3fvQkJC+Hz+kSNHam6cZGBg4OrqeuTIEQDIzc0NDAwky9lsNjlwhtzvXvwWyMXBAYDD4ZB1KioqDh8+3CQBI4SaR0RExJAanzOeTObLkFp3HJAjmAgBANq1a3f27Ek6fRqF8gdA6T/FWXT6IkXFXdeuXWj0CCUvLy9tbW1ra2sylaqrq4seQXTr1q1///7t27fv1KlTWlqag4MDOZxdVVWVHPqlqKgovhKbtrY22TnT0NAgu5XKysqi4XB0Op2cdKGvr3/9+vVNmzZZWVl9+vSpc+fONdfgPn369JEjR2xtbYcNGzZq1Chy9OCiRYtevnxpa2vr7Ozs7u5ODmEFgC1btsybN8/Kyio0NHTFihUBAQEODg7dunUbNGgQvlpAqBWhUCg1J1gIAChyML3kK5p26dKmIpNFt8PCwhwdu1IoNBWV9srK5hQKdcAAz6SkpEY3WB9VVVXSW/64qKhIU1MzKyur1qOlpaXkwF1xJSUlX137u7i4mM/n13oIF91uFXDR7banPotu5+Tk9NTTEwIQYv9bpaZ2KSCgeYJsEq1p0e3WyMPDIzb2TUZGRmJioqKiooODg76+vrQvKo115hYvXkyuYP0ybX8AACAASURBVHft2rX58+d/aVltLS2tmoX1Wfu7hYz1RQg1iJGR0YCpU+f6++8uL9cB4AP4Kim9trb+w9tb1qHJGCZCSebm5qIRla3UmjVrXr58yWKxAgMDXVxcZB0OQqil2LJ/f2D37qM3bWJXVFAVFUdNnRqyYUPrWmNISAgp0MQ7BmMibOn4fH5mZqalpeWXKpSXl1OpVPHXdSYmJhMmTGiW6BBCrczEKVMmTpki6ygagwDiWcaL49HnpttPGG4z6Osn1BsmwpYuLy/PycmpqqrqSxU2bdqkrq5OTmlACKE2KbYw0S/qDFfIW9L5+y6Gzk3bOCZChBBCLVdKSZpftH9eVcH3LtP7WfTicrhNfglMhFL06dOnkydP9unT5+jRo6qqqps3b2axWDt27GCz2cuXL3d3dyernT59+u7duyoqKrNmzerXrx9ZePfu3dOnT6uoqEyfPl3UoEAg8PPze/LkiZqa2sKFC0UtIIRQ25NdmXsy5nxMYcJMR+8R1kPoVGm9y8REKEUFBQX79u3LyMhYtmzZ5cuXx4wZY2FhsWzZsvj4eC8vr8+fPysrK2/duvXSpUv79u0rKiqaMGFCYGBg//79nz59Onv27KNHj2pqaq5atUrU4Pz580tLS1esWJGXlzd27NgHDx44OjrK8AYRQi1WWVnZwu8XvXmZoKauNHn6qDXr1sg6ogYo51RcSrh+O+3BSOsh59x/VGFId/+QNp4IQz//vffNkea5Fp1K29F/o63Of9b2FAqFR48eVVZWtrOz09PTO3PmTOfOnfv377979+7ExMQuXbrs27fv6tWr5C67qamp+/fv79+/v6+v7/Lly8kF6tasWTNt2jQAyMjICAwMLCgoIPdaSkxMPHny5N69e5vn7hBCrUhoaKjnsBlC/iI+LAeoSN5w8OC+jh+z3pOfHi0Zk8e6lHD9xoeQ4VYDL3gd1VBsjlU72ngi7G/eq5tR52a7nLqC5BouRkZG5OIv5EItosGfWlpa5eXlVVVVhYWFTk5OZKGTkxO5sdHHjx99/ln6z8HBgfwiJSWFw+GIvuVyuaLnqAghJG6s1xwu/w7A/z/9uET/4uJfp03yuXbzsmwDqwNPwLv+ISQg/lp3k+9ODN9nqCr1adwibTwRUinUmsmpOUksii3xrYqKipKSUmFhITmNvbCwkNx9QldXt7i4mKxTWFhIfqGnp6epqZmamvrV3ZYRQvIsLS2Nw9EQZUESD1Y+eOAmq5DqJiSIsMwXflH+RmqGuwdsttH+4mwxKZH7JeZkikqljho1aufOnQRBVFRU+Pr6jh49GgC8vLyOHDnCZDIFAsG+ffvIyo6OjsbGxtu2bSMIAgAKCgqSkpJkGT1CqMUoKCgQbTWTkZFBhZrdKV0un9fMUdVHZF7MvLvLriTeXNVj6V8DtzR/FgRMhFKlqKhoZmZGfk2hUKysrETbKpmampKPTA8cOJCfn29iYmJra9u7d+9FixYBwIIFC5ycnCwtLTt06ODk5ETu5kin069fvx4eHm5qampmZta3b9+PHz8CgKamJrncNkJIDt29fbtb+/bz3Nx+cnfvYmp6+fx5FxcXPqQDSGzrlqBZY/192UooSl76cM2Bt8dmOE48PHSni4GDrCJp449GZcvFxeXx48fk1zQaLS0tTXTo9u3b5BeGhoa3bt3i8Xh0Ol30zJPBYBw/ftzX15dOp1Op1HXr1pHllpaWd+7cEQgEAoFAtCHGpk2bmud2EEItAZvNFo15eXj//l4fn9slJQYAAFAGMGfJEgDoYKn7IW0bH0QjRasYlDlrNy6WRby1+Fyeeep9QGJxygxH7xHWg6kUGXfJMBG2CLVuD/2lvZ9oNFrrWhsQIfTtsrKyfps7NyUmRokguMrKP23YMH3OnO2//nrmnywIAFoAp8rKhqxb9yYurqtL37RPF6jEAAqUCihPv587ZunPS2V5AwAAUMAqOht7+XnWK2+7MWt7LlOgNXKHu6aFiRAhhFq6oqKiUd2778nJ6U8QAFAOsGzZsqz09PLCQrP/1tQCoFVXKykpJaZFRkdHh4SE6Os7jx27jxyIJ0MVnMqLCUHk1MALo/xUGSqyjUccJkKEEGrpDm3f/kteHpkFAUAT4HhFxXfHjgGdToDkXgxsgiAfGrm6urq6ujZ7sJLYfHZQyp1LCdf7mPXwH3FIR/nre701M0yECCHU0r199myhQCBeQgPoThBFdnZ38/I8iX/HxbwBsOzUqYVMsuILBXfTH515f9FR3+7I0F0m6kayjqh2mAgRQqilo9FoNZea5lAoC1avXpWWlpGXN4HDoQHcZjD+0te/evq0DEL8L9GWSYaq+tv6re+oYy3riOqCiRAhhFq6fqNGXY+OXsrhiEpYAJFUql/fvmEJCfv//HPanTsCgaDX4MFPNmzQ0tKSYagAEJkXczTqDI1CW95tUZd2TbxlkjRgIkQIoZYlOTk5wM8vIznZ2tnZZ9EiMzOzBT//PPDMGcXMzDlstgJAEsCPOjort21jMBgMBmP1n3+u2LRJKBQqKirKNvKk4g/Hos8Wsormukzva96zybeSl5I2lQjV1dUPHz58ugU8FpBbVVVVai1s0i5CrYvvrl2Bu3YtKyycCBB/9+7Ekyd/3rVrso9PaHT07o0b+wUF8TgcEwuLP//6q0VtxJZRkX0y5nx8UbKP0yRP60E0Smua4kUhCOLrtZrdxYsXb926FRAQ0NATS0tLpRFPreTnQ7/+d8pgMFrvz4QgCCaT2Xrjrz+hUMhms1VUWtD4dSnh8/k8Ho9cxalVSElJmderV2hRkaiPwgLoq68fEh+vr1/XItQ8Hk9WPcKi6pIz7y8+z3o1yW7sONuRilKeGsjhcCgUypemWTdOm+oRAgC5enXzoNPp6urNsUWIzMnPnSIkW7cCA+eWlIh/LqsAeFdUPLh/f5rYHt0tBItXfeNDyMWEoMHt+53zOiLbHQ6+RVtLhAgh1HqV5uc7CIUShYYcTklBgUzi+RKOgBuUfPty4vVepu6nPQ/oqejKOqJvIsVEeO/evdOnT1dUVHTq1Gnnzp3kKmIVFRV79ux5/fq1mpranDlzPD09pRcAQgi1LjYuLu+VlIax2eKF0ZqaQ+ztZRWSBCEhvJseeub9xU66HQ4M3mauYSrriJqAtBKhv7//6tWrt2zZYm5uHhUVxefzGQwGh8MZMGCAjY3NkiVL2Gx2dXW1lK6OEEItX2Vl5QV//8RXr4ysrUdPnmxnZzfe27vPhg1eOTl2/9R5BfBCT2/HwIGyDPQfkXkxvpEnlRlK63std5bdZhFNTiqJkM1m//LLL1euXBk4cCAADB48mCw/efIkAFy8eLGFrHqAEEKy8jI8/MeJE2cWFXnzeNkAiw4fHr5w4W9btpx/8GDBxImmRUU2HE6coiLLwuLy1au1rsvfnOKLko5G+VdyKmc5T+ln3ku2wTQ5qSTChIQEgUCgqKj4ww8/qKiozJ8/39bWFgD+/vtvT0/PPXv2xMfHd+vWbd68eXQ6vqRECMkdHo+3eNKk27m5xv+UTCgq8jp8uO/Ike7u7s/i4xMTEz99+jSzY0cbGxtZBgrwqTzz9PuAxOIPMxwntoQtk6RBKnno8+fPfD5/7dq1v/zyy/v377t27fr+/fv27dtnZGQ8fPjw559/HjNmzPbt29++fUv2EWv6+PHjvXv3Onfu/P8o6fQdO3Z07dpVGtE2WlVVlaxDaCZycqcEQbBYrJY5oahpCYVCDocj+O/alW0SOX2Cz+fLOhBJr169cq+uNhYroQIsKykJOHzY3t4eAMzMzMhtvSsrK+vTIDl9gsutuRBb4xVWF19OufEqL3KM9fClTvMYNAazitmE7TdOQ6dPqKiofHXfOqkkQhUVFSaTefToUTs7u9GjR79+/frcuXPr169XUVHp0aMHuc2sjY2Ns7PzoUOHap3iY2pq2q1btz///FNU4uDgINqLsuWQn0kF8nCnBEFQqVQ5mUfIYDBwHqEMMZlME7H10kjGAKX5+Y37b61p5xGKb5kUMLplbZmkoKDQOuYRWlhYAICR0f8XGjc2Ni4uLibLqVSqqFAoFJaWltb6b5TBYOjo6Li5uUkjPIQQki1LS8srKirA/E8HK55CsXZyklVIJPEtk86O9NVWkvGypc1DKk97O3Xq5ObmduPGDQCorKx89OhRjx49AGDq1KmhoaHkc7YbN25YWFiIkiVCCMkPZ2fnHEPDZ9R/P4GLAHbq6vosXiyrkPhCwa3U+1ODFyQXpx4dtnuF+2I5yYIgvekThw8fHj9+/LFjxz59+uTl5eXt7Q0A/fv39/T0tLW1tbCwyMzMvHDhAg4fRQi1eR8/fvxz+fK46GhFBYX+I0b8+vvvqqqqAffvzx0z5sjHj25VVTkqKmHKyjtOnGjfvn3zhyckiLDMF35R/kZqhjv7b7TRtmr+GGRLimuNcrnclJQUY2NjHR0d8fL8/PySkhIbG5s6BgQ3eq3R5lRZWSkPb85Abu4U1xpte1rCO8LnYWHLJkzYVVTUmyA4ABcVFf2MjO69faurqwsA79+/T0pKMjIy6tq167cMg2j0O8LIvJgj704zaPQFrj6uhjJ+MFsfrWytUQUFBUdHx5rlhoaGhoaG0rsuQgi1HL/NnXu9sJBcf4UO8D2Ho5aVtXPduh1HjgCAs7Ozs7NsduyLL0ryi/Kv4FR+7zqjt2kL2sii+eE0PoQQkpaSkhLligqJVcjG8fn77t+XTUAAAPC5PPN4zPmUktTZzlOHWvZvk1MDGwQTIUIISQuXy1WuMRKCASCrqY2FrCL/2MvPs155241Z32u5tLdMai0wESKEkLQYGhpmUanVAOJvKV8CODT7NIkKbmVA/LU7aQ9HdRh2YVTLmhooc/LeI0YIIemhUCg/rl49S0tLtGN4IsDP+vqrdu9uthjYfM6F+KszghexeNVnRhya5zIDs6AE7BEihJAUfb9kiYaOzpA1azQ5HDaAqrHxsVOn7Ozsvn7mNxMQgpC0R/6xlx31O/kO3WGqbvz1c+QSJkKEEJIu72nTvKdNKysrU1ZWbqpV0OpGAPEs48XJmPP6Knp/9lljqyvjlbtbOEyECCHUlFgsFp/P19DQkCjX0mqmhVpiCxP9ovyreMy5LtPb3pZJ0oCJECGEmsaL8PDV339PlJQwKJQqZeW1f/01auzY5gzgY9nnM7GX/tkyaQgVl+6qH0yECCHUBF69fLly9OhzxcXtAQCgEGDOnDmc6uqJU6c2w9ULWIXn46++zH3rbTd6Xc9fGDQZb+TbuuCoUYQQagJ/Llt2/J8sCAD6AOfKynauWSPt65ZzKvyi/Bc+/FVdQS1glN9U+/GYBRsKe4QIIdQEcjMzO/23RAtAqbqazWZLaS/Vaj77+j9bJp0cul9TQV2R0RwjcdoeTIQIIdQECAqFAJB4KcchCDq96T9meUL+vfTQ0+8DnPTt/YbtMVIzJBfdbvILyQlMhAgh1ATcevS4f+3aMLH9fBIBtE1NmzYR/nfLpE022pZN2LjcwkSIEEJNYNP+/SNfvSrKzx/P49EBHlKpa/X0/M+cacJLRObFHH53WoHGWNVjqYuBQxO2LOcwESKEUBMwNjZ+Ehe3Y+1av4cPBXz+dz17huzcaWRk1CSNJxQl+0X5l3HKZztPxamBTQ4TIUIINRiXy42LiysqKrK3tzc1/f8+S5qamlsPHWraC30s+3ws+lx62ac5zlMHW/bHqYHSgIkQIYQa5tG9e6vmz+9cXa3P4+1UUDBxdz944ULNpWS+UT6z8NT7C69z3k13mPi7x0qcFCE9mAgRQqgBkpOT182YcbeoSP+fkoD79+eOHRsYGtpUl6jgVl6MD7qd9mCk9ZALo47iZhHShokQIYQa4NjOnRvFsiAATOXxzsTFZWdnm5iYfGPjbD47MCk4MCl4gIXH2ZG+2krNtDypnMNEiBBCDZAaH/9LjUJnHi81NfVbEiFfKLiT9uBs7GUXQ8ejw3Ybq7X7liBRg2AiRAihBtDW1S0AkMh4+XS6trZ24xokt0w6Hn3OUFV/W7/1HXWsvz1I1CCYCBFCqAHGzZt3KDz8ZHm5qCQDIElFxcnJqRGtRebF+EX5UyiU5d0WdWnn3HRhogbARIgQQg0wasyYh15eE+7eXVhcbAjwksE4qqt79PJlSgMnNiQVfzgWfbaQVTTXZXpf854UydXZUPPBRIgQQg1z8Ny58OfPg8+dK8jOdu7V68miRZqamvU/PbMi+0TM+fiiZB+nSZ7Wg2gUmvRCRfWBiRAhhOqSnp6ekZHRvn379u3biwp79e7dq3fvhjZVxim/nHDjbnqot93oNT2XKdIUmjJQ1FiYCBFCqHapqak/TJyonpNjxeN9YDC4FhZHrlwRT4f1R26ZdDEhqK9ZzzMjD2opNqAHiaRNuokwNzeXyWS2b99eGhuRIISQ9FRXV08aMOBEZmbnf0peFRR4DxjwPClJQaEBPTlyy6RT7wOc9e2PD9/bTtVAGtGibyGt/JSfnz958uTo6GhDQ8OKioqcnBzRoerqahcXl9LS0sLCQildHSGEvlHwzZujSko6i5V0B+hfVHT//n0vL6/6tEBumXQ06oyxWrs9A3630rKQUqjoG0krEU6ePNnOzu7Ro0c0Gq24uFj80Lp165ycnMLCwqR0aYQQ+nYpUVGuTKZEYZfKyuSYmPokwsi8GN/Ik8oMpTU9fnbGLZNaNqkkwri4uIiIiODgYC6Xq6SkpKurKzr0+vXrly9f/vnnn5gIEUItmZaBQRGVCv/d9r2AwdAy+MqzzfiiJL8o/wpO5SznKbhlUqsglUSYlJRkZmbm4+MTFRVVUVGxatWqX3/9FQA4HM6CBQvOnDlTUVFRdwsCgaCkpCQyMlJU4ujoqKioKI1oEUKoJs8xY2Zv3z6zqEi06QMHIEBL6+qIEV865VN55un3AYnFH2Y4ThxhPZhKoTZPqOgbSSURFhcXJyUl/fbbb0FBQampqV26dOnVq1fPnj1///33UaNGubq6frU7+Pnz5zdv3sybN09UsmvXLnd3d2lE22hMJrOhU2hbKTm5U4IgWCyWrKNoDkKhkM1mC//b12mT+Hw+j8cTCASNONfQ0HDMTz8N3r9/ZXGxDUAywHZd3RmrVmlqalZVVUlULmAVXU658SovcqyN58/O8xk0BovZrP+WeDyeUCjk8XjNeVGZ4HA4FAql/uOVVFRUqNSv/EVCIQjimwOTdOPGDW9v7+rqahqNBgCjRo3q2bPnrFmzbGxstm7dqqSk9OHDh6NHj+7Zs8fb21tLq5bl1S9evHjr1q2AgIAmj60JVVZWqquryzqK5iAnd0oQBJPJVFNTk3UgUkcmQhWVtr+5D5kIlZWV61O5rKwsJSXFwMDAwsJC9JdfYmLi2YMHP6ekWNrZzfrppw4dOkicVcouPxd35dGnZ+NtR3rbjVGmKzXxPdQPmQjl4bFZQxNhfUilR+jq6kp+ppA7VZaXl6upqVGp1GnTpsXHxwNAbm4un8+PjIwcPXq0NAJACKH6q6qq+m3+/KiHDzsD5FGpBVpaBwICuri5AYCdnd22w4drPYvNZwel3LmUcL2PWQ//kYdwy6TWSyqJsH379mPGjFm0aNGKFSueP38eExNz8eJFAwMDPz8/skJYWNjLly9F3yKEkAzNGTNmeFjY4X+eK6YVFEz09LwdFWVsbFxrfZ6QH/zh3vn4wO/auR4b/hdODWztpPUu99SpU0ZGRkuXLo2IiAgPD5f492RkZDRz5kwpXRohhOrv06dPle/fzxZ7u2YN8GtR0Yl9+2pWFhLEw09PZ95aFJH7bveAzWt7LsMs2AZIax6hurr6rl27vnS0Q4cOe/bskdKlEUKo/pKSktw4HInCrkJh8Nu3EoWReTFHo87QqbTfui/pbNiYTZdQy4QrnyGE5JqGhkYJgyFRWAygIbbRbmJxil+Uf3F16VyXabhlUtuDiRAhJNe+++67RQxGCYCOWOFxLa2xs2cDQEZF1smYCwlFyTNxy6S2C+d7IoTkmoKCwo4TJ4bq6wdRKFkAEQAzdHSogwe7D+ix+7XvTw9X2+ranB911MtmKGbBtgp7hAgh+VJUVHTv3j1NTc2BAweSkymHjhjhGBV1ePv2c5GRhsbG3vN9cvRLZof8NNJ6yHmvo2oKqrIOGUkXJkKEkLwQCoVD+o18Fh5Hh24ALAFl4ZIfp+7ZtwsATExM/jx4kM3nBKXcPpFwxUOz++kRB/WUdb7aJmoDMBEihOTFkH4jw/425UMw//8ffWUHDww1Mt2zYsVyASEISXt0JvaSo14n36E7TNVrn0GI2iRMhAghucDn85+FR/PhptjnnhaPuPDn5iH9pw86FHlCW0lra5+1tro2sowSyQImQoSQXPj48SMV2gH8Z6aERkde+8ntD0aemOU0GbdMkluYCBFCckFfX5+AfzeAUzX9bD72krp1Su7tklObDlDlYH8V9CWYCBFCckFLS0tVWVDGjFTSMzMbFajr9jr73ui0IwrfuX7ELCjnMBEihOTF+Zu+S08sNOhnnvekT8TypTS2v4Jy0PU772QdF5IxnFCPEGr7mDzWyZgLR0svLFzso3GTW3X/sJGGzwwfdmnFJwMDXDVb3mGPECHUlvEEvFtJDwLir3U3+e6k534DFb0VIT/KOijUsmAiRAi1TfkFBefDLz1lvTLVNN49YLONtqWsI0ItVL0SYWJi4rt377p06WJnZyftgBBC6Nv9tmf5S3ivVcW1u/ohMp//16CcfWfOKCgoyDou1BLV/o5w2LBha9asIb++c+eOs7Pz9OnTnZyczp0714yxIYRQgyUUJU+58P07iNkUmHBrU9jOuNzQwkLLGzfWL10q69BQC1VLIuTxeI8fPx40aBD57fr1693c3OLj45csWbJy5Uqe2D7OCCHUcnwuz9z4945Nz3fm30s499vjga9zRIeWV1ffDwoSCoUyDA+1WLUkwuLiYh6P1759ewDIzc2Njo5esWKFvb39mjVrcnNzMzIymjtGhBCqUwGraPdr36WP1tjq2pz3OlLxJMNISIhXoAK0o1BKS0tlFSFqyWp5R6isrAwATCYTAG7fvk2hUPr37w8A6urqAFBWVta8ESKE0BdVcCsvxgfdTnsw0nrIhVF+qgwVAFBQUmICSGyeVCQUamhoyCRI1MLV0iPU1NS0tLQ8cODAx48fjx071q1bN11dXQBIT08HAENDw+aOESGEamDzOQEJ12YEL6rkVp0ZcWhBZx8yCwLAuJkz96moiFcOoVJt3dwYDEZtLSF5V/uo0Z07d06bNu3EiRMKCgrBwcFk4c2bN9u1a2diYtKM4SGEkCS+UHA3/dGZ9xcd9e0OD91pom4kUWHp6tU+L17MiIiYVFKiDHBfXf2Vmdm1s2dlEi1q+WpPhBMmTOjatWtsbKyjoyP5shAAHB0dT548ScFF+RBCMkIA8SzjxfHoc4aq+tv6re+oY11rNQaDEXDv3rNnz0Jv3GBWVPTy9Nw+diyVigtpodp9cR6hhYWFhYWFeImXl5f040EIodpF5sX4RflTKJTl3RZ1aef81fp9+/bt1asXj8cjxz0g9CVfTIR8Pj82NjYzM5PD4YiXT5w4UfpRIYTQv5KKPxyLPlvIKprrMr2veU8K/PtcqrS0dPOyZc8fPQIeT0Fd/efNm72nTZNhqKg1qj0RPn/+fNasWWlpaTUPEQRRsxAhhKQhsyL7RMz5+KJkH6dJntaDaBSa+FEWizX0u++WZ2bu4/EAoLSgYNnixR/i4tZu2yajeFGrVHsi9PHxodFoV69etbe3V1RUbOaYEEKojFN+NvZK6KewSfZj1vRcpkirZXW0k4cPT83OnvTPKh/aAKfKy7udOLF45UotLa3mjRe1YrUkwtLS0vT09Pv37w8ZMqT5A0IIyTkWr/rGh5CLCUF9zXr6ex3SUtT8Us1X9++v/++7GypAf4EgKiqKnP2MUH3UkggVFBTodPq3zzzlcrnnzp2Ljo7W19f39vbu1KkTj8d78uTJ8+fPmUymu7v7hAkTcBwXQkiEI+AGJd++nHi9l6n7ac8Deiq6ddenUCg110zDVdRQQ9WSh1RVVSdNmhQQEPAt7XI4nAEDBly4cMHa2looFL59+xYAnjx5snLlSiqVamZmtn79+rlz537LJRBCbYaQEIakPZoevDCxOOXA4G2/uv/41SwIAL1GjLj93xGhfICndLqbm5vUIkVtUO3vCEeMGLFs2bLs7OyhQ4dqa2uLH6rnqNFDhw7x+fywsDDxPl/fvn2joqLIrwcMGNClSxdfX1+V/y4AgRCSN5F5Mb6RJ5UZSut7LXc2cKj/ibMXLOh/+LDup0+zuVwqQD7AEi2taUuW4FJqqEFqT4TLli3Lz88PCgoKCgqSOFTPUaP37t2bPn36tWvXPn/+7OHh4e7uDgDi425YLJaioiJuD4aQPIspiPeL8ucIuAs7z+pm3KWhpyspKT2MjNy2erX7zZvA46np6KzYtm3EqFHSCBW1YZRaE9vnz58FAkGtJ1hZWdWnXRsbGwqFMmDAADMzs0OHDm3ZsmXevHmiozwez8PDY9iwYZs2bar19L/++svX17dfv36ikkWLFrW0bYGrqqrU1NRkHUVzkJM7JQiCyWTKw50KhUI2my3bhzEfKzJOx13MqsqZYT+xr0kvaj2WrHr+/PnpnTszPn82MzeftXx5H7HPhy/h8/lyMqGex+MJhUJ5GOTP4XAoFEr9O1FKSkpfHYxSe49QYk2ZRqDRaJ07d/bz8wMAe3v7n376SZQIBQLBzJkzDQ0N165d+6XT1dXVdXV1u3btKmrNxMSkpf2OuVxuSwtJSuTkTgmC4PP58nCnQqGQIAhZ3Wk+s/BCwtXw7DcTbL3+6LiaQavXQthbfvvt/enTm0pLOwJ8SE3dHBX1fNq0zfv21X0WjUajUqny8DulUqlykggBY5goEAAAIABJREFUoEGJsD7Lgn5xZRkASEpKio6OzsrKMjIycnR0dHFxqeeFAcDExETUgbO3t8/NzeXz+XQ6XSAQzJo1q7S09ObNm3WsBK+mpmZjY7Nw4cL6X7H50Wg0Go329Xqtn5zcKUEQcnKnFApFJndawam8mCDaMumoaLOIr0pJSfn77NlHpaXkR5oTQGBp6bBLl5J/+MHe3r6OEwmCEAqF8vA7FQqF5K9V1oFIHY1Ga/I7rT0RVldXz549+/Lly+KFgwcPvnz5ssTYmS8ZO3bsnTt3yK9fvHhha2tLp9MJgli0aNHnz5/v3r0rJ3+5IIQAgM1nB6XcuZRwvY9ZD/8Rh3SU6/UxIvLo3r3JJSXif9hTAKYWFz+8c6fuRIhQfdSeCJcvX37t2rWVK1dOnjzZyMiosLAwODh427Zts2fPvnHjRn3anT179tmzZwcMGGBqanrv3r0LFy4AQHBw8LFjx+zt7fv27UtWu3bt2rc/hkUItVjiWyYdHbbbWK1dIxphVVSYCiXnB6oTRHZ5eVPEiORdLYmQy+X6+/tv27ZtxYoVZImhoaGjo6OlpeW0adMKCgoMDAy+2q6amtqLFy+ePn3K4XB2795NntKnTx9yQqEIbvOLUFtFbpnkF+VvpGa4vf+GDtr1GmdXK6euXW9raU0uKxMvfK6pOcDd/ZvDRKi2RFhUVMRisYYNGyZRPmzYMIIgPn/+XJ9ECAAMBmPw4MHiJdra2jjRFSF5EJkXc+TdaQaNvrL7EldDp29sbfDgwVtNTIIqK8f9M5o9mEqNMDbe5en5zZEiVFsi1NLSotPp5K684uWxsbEAoK+v30yhIYRaocTiFL8o/+Lq0rku0yS2TGo0KpUa9OzZyvnzt/39d0cqNVUotO/ZM+j4cXkYG4KaQS2JUEVFZfjw4UuWLFFSUho9ejQ5AyM0NHTevHlubm6iDesRQkhcRkXWyZgLCUXJM2vbMukb6erqnrh2jcPhfP782cLCAkfboSZU+2CZI0eODBkyZNy4cYqKiu3atSsoKKiurjYzMzt37lwzx4cQavkKWUX+sZefZ73ytvvilkkNkpmZmZiYqKen5+TkJD7PSlFRsWPHjt/YOEISak+EJiYm7969CwwMDAsLKysrU1dX79Gjx+TJk+Vh0Q2EUP1VcCsvxv9/auB5r6NqCqrf2GB5efmPU6fmR0R05XILGIwoZeWdJ08O+O9oA4Sa1hcn1CsqKk6fPn369OnNGQ1CqLVg8zlBKbcvJ9zwMOt+esRBPWWdJml29ujRk8PDvfl88tsCgJFTp1548aJDhw5N0j5CNeF2gAihhhEQglup96fdWphSkuY7dMcK98VNlQUzMjJYCQmiLAgABgAbi4uP797dJO0jVKt/e4SBgYHLly9ftWrVokWL3NzcCgsLaz0hIyOjuWJDCLUs5NTAEzHnDVT0tvZda6tj07Ttp6WlOYtlQZILQZyIjW3aCyEk7t9EaGZm5uXlZWNjAwBDhgypqKiQXVQIoRYntjDRL8q/isdc1GVOT5Ou0riEtrZ2Pl3yfU0egA7O2kLS9O+/ue7du3fv3p38etu2bTKKByHU4nwoTT8WdTanKm+uy7T+Fr2bZGpgrZydneOUlLIATMUKD2lpeYtt4oZQk6tr9wmEkJzLqco7EXM+Jj9uptOkEdZD6FTpTmCnUqm+ly+PGjduYXFxdx4vH+Cwrm57Ly/PkSOlel0k5/5NhOnp6S9fvvzqCdOmTZNmPAihFqGcU3Ep4To5L+Kc1xEVRjPtbdu9R4/HiYmnDh/e9/Kloanpypkzu/fo0TyXRnLr30T47NmzOXPmfPUETIQItW3VfPb1f7ZMOjvysLaSplQvx+VyJTZH1NLS+mXNGqleFCFx/ybCSZMmDcZZqwjJMZ6Qfy899PT7ACd9+0ZvmVR/jx4+3Pzjj4KyMgGAjpnZthMnXF1dpXpFhGr1byJUUVFRUanvhtEIobZESBBhmf/fMmln/0022pbSvuKNwMCjCxZcLi01BgCA+IKCOYMHH3v0yMXFRdqXRkgCDpZBSN5F5sUcfndagcZY2eMnVwPHr5/QFLb+9tu90lLRPHwHAL+ioi1Ll159+rR5AkBI5N9EeOPGjXXr1n31hLi4OGnGgxBqPglFyX5R/mWc8tnOU/uZ92q267JYLEUWS2I1GleAT6mpzRYDQiL/JkJdXd3OnTvLMBSEULPJrMwOiAxKLE6Z4eg9wnowldKsqy3S6XQeQUgUEgCSRQg1i38ToYeHh4eHhwxDQQg1gwJWkf/7S8+zXk2yH7u25zKFb94yqREUFBSU9PU/FhaKv4p8RKF0cXdv/mAQwkW3EZIXFdxKvyj/uSFL1RXUTg7ZP9V+vEyyIGnnqVMT9fXDKBQCgA8QRKP9ZmS0cf9+WcWD5Nm/PcLMzMzo6Gg7OzsbG5sHDx5wOJxaT/Dy8mqu2BBCTUN8y6QzIw5pK2qy2exmDYDNjo+PZ7FYjo6O2traANDN3f3Kq1dbfv55eXQ0nU7v3rfvo927dXV1mzMqhEj/JsJHjx7NmTNn69atq1evnjFjRkFBQa0nEDWe7COEWiy+UHA3/dGZ9xcd9e0OD91pom4EAEKhsDljuOTvv2v16u94PBWhcAWNNmjy5N/37qXRaFZWVqeDg5szEoRq9W8iHDdunLu7u6GhIQD8/fff/BqboSCEWhFyy6Tj0ecMVfW39VvfUcdaJmE8fPDg3LJlz0pL1QAAQAiw6eTJzTTa73v3yiQehGr6NxFqampqav5/LaWOHTvKKB6EUBOIyI06Fn2WTqWtcF/c2dBJhpEc2LBh/z9ZEACoABtZLLeAgI27d4svq4aQDOGEeoTalKTiD8eizxayir93md7HvIf0tkyqp9zsbInde2kA5hRKfn6+sbGxbGJC6L9qT4QsFmv//v3BwcGfP3+WeKleUlLSLIEhhBomsyL7RMz5+KLkWU6ThlsPolFaRH9LUUmpCkDtv4XFBCF6/oSQzNWeCGfPnn316tWBAwdOmDABFyBFqIUrqi7xj70UlvFykv2YNT2XKcpuUkRNo6ZM8du1a7nY39NvALQtLVVVVWUYFULiakmETCbz2rVr+/fv//HHH5s/IIRQ/ZFbJl1MCOpr1tPf65CWYovrZi1ds2ZiaOjn+Pip5eUqAI+UlAIMDAIvXpR1XAj9q5YJ9TweTyAQ9OzZ81vaFQgE69evNzQ0ZDAYDg4O5eXlZPnBgwcNDAw0NDQmT57MZDK/5RIIyTOekH8r9f7U4AXJxanHh+9d4b64BWZBAFBSUroVHt7/xInzkyfvHzlSaevW58nJlpZS390CofqrpUeopaXVq1evp0+fdunSpdHtrl+//vHjx+Hh4ZaWlrGxsQoKCgDw9u3bjRs3Pn/+vH379mPHjv3jjz+2bdvW+NgRkkvklklHo84Yq7XbPWCztVZ7WUf0r4SEhOBLl3LT0+179Jjm46Om9v+Xg2MnTBg7YYJsY0PoSyi1TpBPT08fP378hAkTBg8erKenJ37Iysrqq40ymUwDA4MXL15IbC22ePFioVB45MgRAHj8+PHUqVPz8vJqbeHixYu3bt0KCAhowK00u8rKSnV1dVlH0Rzk5E4JgmAymaLP7pYpMi/GN/KkMkNpgauPs4FD4xoRCoVsNrvJX/9vW7Pm0fHjC4uKjAEiFBTO6uoeCQpy7969aa/SIHw+n8fjKSsryzCG5sHj8YRCoaKioqwDkToOh0OhUP7X3n3GNZF1DQC/KdTQIRCaBQRFQUHFgoqKgh0FBayoa1nL2nUt2FZX1/bYC9gRRJQVXXtBwYYVkS6gKFJDEiCEQOrM+2HWvFlARSEEw/n//JDcmcycSzvOzL33EBdXjeWL0yd0dHTWrl1buzBTfVaWyc7OplKp9+7dCwgI0NDQmD9//uzZs4n20aNHE/s4OjoymcyKigo9Pb06DyIWi8vKyojXFArlS7sB0EKksd+GJIZWCHnTOk9oypJJ9RQfH/80JCSmtJSYrtFHJBpXVOTt5/fiwwcqFaZpgWat7h9QX1/fwsLCTZs22draqqmpfe9Bi4uLeTxecnLyy5cvMzIyhg4d2qZNGy8vr7KyMtl/t4krjNLS0jozXHZ29pUrV2JiYmQt4eHh7u7u3xuJQlVWVio7hCbSQnqK43hVVVUzXETwE68gIvNiZtn7APvRXq0GkElkHo/XkANiGCYUCqVSaWNFiBCKOHRo8ecsSLBCyLW6+uHDh66uro14ou9CXBG2hHWyiCtCkUik7EAU7nuvCLW1tb+5dEMdiZDFYiUlJV26dGnMmDHfHSNCCCFjY2Mcx9evX6+rq9ujRw8/P79r1655eXkZGxvLRs2Ul5cjhGrcd5Wxs7MbO3ZsM781ij6n85agJfQUx3Eymdysbo0y+ayw1AuP85/7O4ze6P67GuW7/1daJwzD1NTUGvfWKJfNrj093lIorKysVOIPD9waVT3q6uqNfmu0jlGjRP40Nzf/4YPa2trKR0kikUgkEkKoQ4cOycnJRGNycrKVlVWz+qMDQPNRIeSFJIbOvLlYV13nrHfwxI5jGysLKkjbjh3TSTVXsUnX0qrPqAIAlKuOREij0caPHx8eHv7DBzUyMvL39//zzz/5fP7r16+joqKIR4MzZsz4+++/nzx5wmKx/vzzz5kzZ/544ACoKIFEEJF+cfLVuTxR5ZmRh351mUpTa3aLWmRmZv4+e/a4fv2W/fLLmzdvEELTFizYZmzMkdvnPonEsrBwdHRUVpAA1FPdzwj79esXFBSUnZ3t5eVV46KNGPbyTfv371+wYIGtrS2Dwdi9e7eHhwdCyMnJ6eDBgzNnzuRyuT4+PqtWrWp4BwBQGUTJpFPJEU70jsFDd1noMJQdUd2OHzgQtmnTKjZ7PkLvHj/+/coVr99+W75x45+hoV6zZ7tXV1tUV7/S0am0sTl7+bKygwXg2+qePsFgMJhMZp0faJqhBDB9ollpIT1V4vQJomRSSGKouY7ZvK7T2xkq9nZiQ6ZPFBYW+jo7P2SxZA8/pAh5mpgcefy4ffv2AoHg+fPnTCazY8eOzeFaEJ4Rqp6mmz6RmZnZxKU7AWixEoqTjrw+pUahruy1wFmpJZPq4+6dOwFcrvwfIQpC00tLr0dHt1+9WlNTs3///koLDoAf8p9EGBsb27NnT21tbVgYHoAmkM7ODEkMLRdyZzkH9rXqqexw6oXL4RjXGqNvjGHZX7iHBEDz959EOGPGDCaT6enpOXr06JEjR9LpdGWFBYBqy+XmHUsKzyp9N91pwhAbDzKpjmFrzUFVVdXZ0NCUx49NLC1HBAR069atvaPjTQODwPJy+d0StLU7dO+urCABaKD/JMKEhISYmJirV68uWbJk5syZLi4uI0eODAgIcHBwUFZ8AKgYdhXndErk4/xn/g5j1vVZ1qxKJtWQkpIybfjwiSzWeKGQjdDGkyfb+/hsO3LkD1PTOC53wOfhAq8Q+sfE5NHYscqNFoAfVvdgGYlE8uzZs6ioqOjo6Pz8fBsbm5EjR/r5+bm5uZHJTfFfVxgs06y0kJ4qerBMhYgXkXbx+vu73u2GTOw0TomTIuo5WKZXu3Zh79/bybVM19f3OXWqW48ev02YUPX2bUep9D2VKrK2PnT+vK2trUJj/jEwWEb1NN1gGSqV2rdv3759++7du/fVq1eXL1++cuXK/v37zc3NR40aNW/evBqraQMAvkIgEUZnXTuffrmfda9TIw6YaBkpO6Jvy8zMbMXj2f23cQmXuyskxNvH59LDh4WFhTk5Oa1bt7a2tlZOiAA0km8shksikVxdXV1dXbds2fLx48c7d+5cvXr1ypUrkAgBqA8Mx+9+iD2WFN7JpP1Br23WepbKjqi+2Gy2ea3FSC0QKvk8KMbCwsLCovaqagD8fL5jVfg2bdrMnj179uzZMLMCgPpIKE46mHDcUNNgi/ua9sbtlB3O1yQmJgb4/PKpgEUiofbtrC9dj2jbtm16recgqQjZduiglAgBUJwfKY/SNI8JAfh5pbAyQhJDK8X8aU7jm2HJpBr+/vvvCQFLpFgwjrwQwlIzotrbuT16clm3Y8eLT56M/Vy6oQKhdcbGB2FBKKByoE4YAI3pQ3nu6ZTIDE72FEe/EbZe5FrrUDdDM6Yuk2B3EPp3cLgUTcakDL8xvyRnPPnVz+90UlJvPp+joRGnqblu3z54LAJUDyRCABoHk18SlhpFlExa67a0mReLkJFIJFUCkiwLEnA0qJjFNTAwOH/3bnZ2dmpqqrGx8ebu3Ru9qD0AzQEkQgAaiiusiEy/dO39nZG2XhHeIdpqzXqw/uPHj+9GR3M5HNdBgwImTpRIJKQ6/g6QEP7vtaydnZ2dnV2tHQBQHZAIAfhx1RLBpazrkemX3K17nxl52FCzWa9NKJVKZ40bV/Xw4eTSUh2EYi9e7LtpU1RsLJlchTAOQsZy+2Zpa8EfB9BSwM86AD9CjElu5dwjSiaFDP2fuY6ZsiP6tuOHDpnFxPxVWUm8HcDne+XkzPP3X7x46u7/jRTjlxEievGBShqza0+QEkMFoClBIgTg+2A4/jDv35JJOwZubGfYVtkR1VfU8ePnPmdBQh8c5+bkrLl9W0tbc9tf3TCpAY6k6mr8XXvXzJwFdbNBSwGJEIDvEF/w4uibMF11nSC3pY70Zj2j7nx4eFRISGFxcfsOHRZt3uzs7Mzlcmuvo88gkTgczoY/Nmz4YwOTyVRTUzMy+gkWvgGgEUEiBKBeZCWTpnee2MynBuI4Pmn4cJOnT3dyuZYIJb57t/Tp08l//GFlZZX96VONcS85GGZubk68NjP7CW7wAtDoIBEC8A0fuJ+OvTnzruzjjM4TPdsObP5TA29cv6739Ol+Lpd42xOhmxyO26ZNQYcOLc/IuFBWJluY+bCGRk9PT01NTWWFCkBzAIkQgC9i8lmnkiOeFSZM6jTuj74rf5apgXfOn5/4OQsSNBAaIhBo0WijNm7ss2WLp0ikJxLF0mit+vU7eOKEsuIEoJmARAhAHSpEvHNp0cTUwLPewUosmfRNt27cOLhxY3FxsZGRUeCiRZOmTauurKxdSkpXIqmqqpq5cOG4wMAXL16w2eyjbm5t2rRp+oABaG4gEQLwH/Ilk06POGisZajsiL5mw5Il2adPHywvb4NQSV7e1sWL70RHuw4Y8OTGja4ikfyej2k0vy5dEEIGBgaDBw+uTz1CAFoISIQA/EuCSW/l3j+XdcnRpMPhITssdc2VHdE3fPjw4UF4eGx5OfHQ0hShvRUVU+Lj282bF2Rq2rWgoA+OI4QwhA5oaBh0796uXbOugAGAskAiBADhCH/wKf7YmzATTaO/+q+1N2qOxdYzMjL+WrYsKyODRqMNDwhYsHLlwwcPxnC5NYbu+JWWPr93L/rRo6VTp658+9acRHqHYcPHjz+xY4dy4gag2YNECFq6hOKkkMRQEom01HVue11bHZ3az9eU78rFizt+/XUXh+OKUCVCx7dtGxQZOWHuXM1atXM1ERJWVbVp0yb6wYPq6momk2ltbU2hUJQSNgA/BUiEoOV6y8k++uYMq4o9o8vk/q3cEI74fL6yg/oXhmEkEolEIiGEpFLp+gULHnA4xEqm+ggtq6oi5+S8f/s238hoDpst/8H7urquHh7Eay0tLRgOA8A3QSIELVFeRcHxpPA0duZUp4DhtoMpJApCCEe4suNCCKHnz5+vnT2by2QihEysrbccPaqhoeEoldZYzztAIJj9/Lmmk9Pe+PgFQiFxxRdJpT6xsvpzzJimDxuAnxckQtCylAu559Mv38y55+8weo3bEg2KurIj+o+4+/fX+/uf5HCIYS3pTOYML695u3dr4TWTtBZCQqEw6uHD7evWdQsPpyPEwfE+Xl5X9u+nUuH3GoDvoKhfmKdPn8ruMhkaGnbr1o14XVpaeuvWrerq6q5du7q4uCjo7ADURpRMOpce3d/a7fTIAwYayi+ZxGKxnjx5wuPxnJ2dnZycEEIbFyyI4HCsPu/QEaFQNnvB3r0shKQIyT/oiyOTu7q5aWlpbdy1a+OuXWVlZYaGzXqmBwDNlqIS4YwZM2g0moGBAUKoS5cuRCLMyspyc3MbNmyYubn52rVrly5dumLFCgUFAIAMUTLpZHJEZ3rHY8P2MGimyo4IIYQO79x5etcubz5fVyTaqK9PcnI6celSJYtl9d/d7BHiFBb6TJu2MDh4J49HTP1LQGizqenVdetku0EWBOCHKfAWyt69e/v0+c/axGfPnu3Xr19YWBhCqE+fPgsXLoRECBSKKJkUnHjaQofxP49NNgatlR3Rv27duBHz119PysqIRdsWsdmRjx//NnEiVtfOGEJrt28/amXVZ9s2MwyrQMjExiby9GlLS8smDRoAFaXARPjy5UsOh+Po6GhjY0O0MBiMuLg44jWHw2EwGIo7OwAJxUmHEk5oqWmu6b24s2knJUYiEokSEhIKCwvt7Ow6d+6MEDqxffvWz1mQMF4sPvDqlbGl5VsWS7680yuEbNq3J5FIvy5c+OvChRwOR09PT03t51j1FICfgqISobGxcWxsbGxs7P3795ctW7Zx40aE0MyZM5OTk52dnS0sLAoLCy9cuPClj5eXl6enp2/dulXWMmHCBCsrqy/trxRisVgsFis7iqbw0/U0iZV2PDlcJBXPdJrsau6CEKpP/DiOK6KnTx49Wj5tWk8+30oguKitzbKyCrl4MbdWOSSEkA1C3mvWTJo/fy+b3Q/HEUIxJNIKOj380CFZVHp6evXszldgGPbTfU9/jEQiEYvFLWH0kFgsxjCMTCYrOxCFE4vFsplF9UGlUr+5s6J+Ph4+fEicOzU1tXv37n5+fp06dXr69OmNGzfWrl3LYDD27t174MCBAwcO1PlxsVgsEonKyspkLdXV1RhW530jpcEwrLmFpCA/UU9zuLknUyLyeAVTOwUMsO5LJpHqHzmO443e0+Li4iXjx99gsf5drq2q6hmHM3noULqJSf7HjzVu1OYh1Ldv34hHjzYvXrw4JYWEUOdu3S7u2WNpadm4UWGfNeIxmyfoqeohptg2bk8VlQhlGdjR0dHOzi41NbVTp047d+6cNWvWrFmzEEJdu3a1trZev349nV67aDai0+nOzs47d+5UUHiNQiQSaWhofHu/n99P0dNifsmJpPBXxUlTOvlvtVurRv7un20cxyUSSUN6yuVyz589m/36tVX79j4BAa1atYoKC1tYWiq/aGkvHHcsLbUeP/6vrKzgigpZ+yMyWdfGxtzc3NzcPPzmzR+OoT4wDMNxvPl/TxuOQqGQyeSW0FMymYxhWEvoKUKIRCKpqzfmxCeF3zFgMpkfP34klrdQV1evrKwk2okXLeTbBhSqXMg9k3Lh7se4ce1HLe0xT4uqnDKzsffuLZ88eSqHM1wsziWRAnbunLl+/YeUFPdaq6B1qqgwbNeO6+8/7PLlQDZbD6E4Xd2nlpYXLl5USuQAtHAKSYQJCQkrVqzo3bs3juMRERHDhw/v2bMnQmjevHk+Pj5SqdTc3Pz48ePTpk0jHngA8GMEEkF01vXI9Evu1r1DRxw0atqSScXFxbq6ujQaDSHE5/OXTp58p7j43/sbOD6RxRr8xx9dRowoqvXBQm3t9qamu44dS1m48M6VK5mlpX3d3bePGtUSHvAA0AwpJBE6ODj89ttvGRkZVCr12LFjnp6eRPugQYNev359/fp1Ho+3a9euYcOGKeLsoCWQYNKbOTGnk8850h2Ch+6y0Gm6Ecg4jh/Zsydk505rHOchpM5g7AoNzc/PH1ZVJX+XXx2h+RzOYzW1A8bGIzkc2Vx4NkJ3tLQ2uLsjhJycnIh59AAAJVJIItTW1vb19a1zU7t27RYtWqSIk4IWgiiZdPTNGQbNdNvA9XaGNk0cwNY1a4oPHXrG42khhBBKZzIDvbz8ly2zrLVgtxWOk6urRy1dOnDPnt/Y7FYIJVGpR01M/hcWBkVxAWg+VH9UMVAlCcVJR16fUqNQV/T8zcWsKa6l4uPjo6OjMQwbN26cm5ubQCCIOnEigceTXeF1RGgLixV8966Vnh6SG+eMEMqgUts6OS1auXLYuHHR4eGP3r2z79Yt5pdfYBUYAJoVSITg55DByQpJDOVUl83oMql/KzcSqu8soh8mkUi6d+6XnlmJ8LEIoYP7fnWwp4WdP9qZRKpR3M8dxzfn5hYYGCSVlXX53MhE6LCR0Y2pUxFC9vb2qzZtUnTAAIAfA4kQNHefKvJPJJ1NZ2cGypVMagIjh/hkZHQXo/2ISLr4hoy3C3+bs9Sk1p6VCGlra5/+++9fvL3tSkq6VFR81NF5qKOzNzQUlk8CoPmDRAiaL3YV53RK5OP8Z/4OY5q+ZFLsgwQRikL/f+lJEqNdz1/YOFlqliAkv253hKaml69vu3btHqSlPX/+PCsra5S19V9ubjA7CICfAiRC0BxViHjn0qKvvb8z0tYrfFSwjjpN0WeMj4+/ce5cKZPZ1cNj8rRpmpqaGK6OUI0piRoYrr7j+NGREyf+xeH0w/EKhE7QaDfatr21YgVCiEQi9erVq1evXoqOFgDQiCARguZFIBFGZ107n365n3WvUyMOmGgZKfqMGIbNHT++7P79XzgcfYQeXb3aZ+vWiLt3SUhUqwggRkJCD0/P8y9e7Fy9en1Cgq6OzogJE2KWLIFVsAH4eUEiBM2FFJfeeB9zOiXS0aTDoSHbrXQtmua8EaGhmrduXeDxiLe9BYLheXm/+vp26tA6Nf2QBC2U7UlFhzp1aI0Qatu27eHIyKYJDwCgaJAIQbOQUJx0IOG4kabBVveg9sbtFHeiDx8+/B0enp+Z2a5r10nTphkZGV08fvx/n7MgwREhGpt9ICZyQF9vPu+hEA9EiKRBCqXpJtx98FJxsQEAlAISIVCyFFZGSGJopZg/2znQzdJVoecK2bPWoMwfAAAgAElEQVQn7K+/5rHZbjiecv68544df506xeFwao/sZOA4hmEc7oddu3ZdjtqHcDTGf9jy5X8rNDwAgFJAIgRKk1X6/uibM0WVzJldJg9o3UfRUwPfvn17buvWWDabeJrXRyLxZzIHTZ/eydk5LTOzRgZ+i1Dr1q0RQsuXL1++fLlCAwMAKBckQqAEhZXFx9+EJZWkBToFjLD1opIbf2ogl8s9FxaW+fKlRbt2vhMn2traRoeHz+Vw5Me0GCE0qqpKd9CgVS9f/lNaqvO5/aS6ur2bm4GBQaNHBQBohiARgibFFVZEpl8i5kWEjfpNW01LEWd5EBu7dNKkaWy2r1icRyJN3b9//PLl7Px8ouy7PAs+n2pgMGffPvcVKwaIRHoiUbyWlqWb28GzZxURGACgGYJECJoIX1x1PuPSpawbQ20GnR0VrKeh21hHfvTo0ZuXL3UNDAZ4eLRp00YgECyeNOl2UdG/c95x3J/NHrJzZ4+pU9Op1H4Sifxn0/X1x9jaenh4DPfxefXqVUlJyfQePYibogCAFgISIVA4sVR8Ofvm2bS/e1l0Oz5srxmN/u3P1A+Hw5k0dKhFTk7/sjIelTrFwGDI9Ok9Bw8eVF0tv/ILFaGFHM7DyspgI6ORJSWWn9tfI/Tc0HC3uztCiEajubu78/l8HR2d2icCAKgwSIRAgTAcf5gXH5IYaq5jtsvjj3aGbRtyNKlU+uHDBwzDbGxsqFQqQmiuv/+CxMQRRAl4sXgeizX16FGOQGBdXV3js5YI8TmcQxcv+kye3IPHa1NVlayjk29ufu7yZeJQAIAWC/4EAEVJKE46/PqUOkVtZe+FzqaODTza+bCwbStXtscwMo6nk8kL168fN2lSYWrqv1kQIYQQGaFN5eVT79+v1NFBQqH8x9MpFBsnJ7e+fR9nZb169SovL2+Qvb2zszOJpPAqFgCAZg4SIWh86ezMkMTQciF3eueJA1r1afgB/4mOjli48EF5uR5CCCE+QrNWr+aUlbWqlcbaIFTN46UZG7/gcHp8bmQitM/I6OqsWQghdXV1Nze3hocEAFAZkAhBY8rl5p1MjsjgZE1x9B9h60kmkb/3CBiGnTl27PrZs6WlpU7dui3dvLlVq1a7g4IufM6CCCEaQiFc7oDgYK1ao0BzETJnMA6cPz9j9GjzggIXHu+TtvZjHZ3dp09bWDTRmm0AgJ8LJELQOEqq2GdSzhMlk4Lclqj/UMkksVjs3bevS0bGDh7PCKEn6eljb97cFh7OLy83+++eugipCYVmHTve4HCGf747iiO0QV9/6pIlrVu3jnnz5vXr15mZmd0tLbf37AkVkQAAXwKJEDSUfMmks94hNDXt7/q4QCDQ1Py32tHJI0fcUlPXVVURb4fjuCuLNWTGDJxEwlHNhWcEOB4SFTVxyJBLHz8OLC3lUakRhoaDAgPHBgQQO3Tt2rVr164N7B0AQOVBIgQ/qLKyki+susd8RJRMOj3ioLGWYf0/zuPxNq9Ycfeff2gYxqdQ/H/5Zem6dbciI/d8zoIEOkIdRCLUtetVJtMbw2TtD0gkB2dnExOTOwkJcXFxr58+1TM2Pu3p2bZtgwamAgBaIEiE4GsyMjKuX7zI/PTJ2d3dz99fXV0dIRQaGrpg/gb9XqbWY0x473ijzQcuHzf/68fJy8vLzMxkMBgODg4UCkUqlY7u23fK27fbRSISQmKEdu/eHfjiBZ/P16v1WT0MG7t06dqsrPdFRWOqqykIXdfQOG5mdvnECWKHAQMGDBgwoNH7DgBoISARgi/6Y9myR2fOzGCzOyP0/OzZPmvXht26Ff80PuhocIc/BgnYFin/m1b5UTuT5CPlSP7asTUvL2/bypVvXr7U0tT09PFZuHq1lpYWm82eP348NznZWSwuVFfP0tHZFx5ezGQ6f/w4XSQiTqSG0Mrqar/ERPM+feJTUkbKDYHBEXpNIu3o2fNhenrwnj2/37iBYVgvT89HK1Zoa3/fPVgAAKgb3ixFRERMmDBB2VF8Q0VFRUM+LhAIwsPCghYs2LN9e1ZWlqw99t69SV5efezsJnl5xcXGytoTExM3r1q1YOLE4IMHKysrZe25ubmRkZGnT51KS0v7sUgwDIsIDR3cuXM3K6shLi7RUVE4jt+6eTPAwABDCP/8Lw2hvkNdXLd4umyaa9AxSW4LW4Nq/uTRo250+m0SSYBQGUIHtLR6tmtXXl7u2bXrNTJZtutHhFxMTZfMmHFd7vPEvxAyecvmzV3p9KzPLWKE1mprL5816we/xN//deDxeE1zLuWSSqV8Pl/ZUTQFsVhcVVWl7CiagkgkEggEyo6iKQgEAqFQ2LjHhET44xqSCFNSUrq3arVZS+sWQmdIJHcTk21BQTiOr1+8eKyRUTJC1QglIeRjaLhh6VIcx4MWLBhqYnIJoXiE9qiru1hYvHr5EsOwDUuW9KPTd2hq7ldTG0mnB44aVV1djeN4cnKyT9++3Swsultbz5swgclkEufNz89f89tvvn36zBk3LubuXaJxxtixC/T1SxDCESpAaLqBwdIZM6aNHPlKLktl2BgsWd3bY/dgRi8nRMJqZDE1sn1PG5tP/209raY2e9KkADq9RsILpVCG9e59qVYiPEChHD927PXr1+4ODl5mZhNNTTvT6VvWrBGLxQ39VtUPJELVA4lQ9UAibF7qnwgxDHv//n1BQYHsbQ8bm0y5HCBFyNvQMOzMmcEmJvJJBkNosInJyePHxxsayueMDwh1b936xJEjc/T05Pc/oKGx5Jdf7t665WZsnPT5CP9QKM4WFvn5+df/+ceVTo8mkXIReobQRCOjXwMCnj9/7mdsXCMnDTEx8ejUqRghHKFPDNr6hd3H7ve8OrDVYroxlWyOUM1ESCW3HWRqWuMg1Qi1ZzC2aGvXaE9GaFjv3oFGRjXaB9Pp2dnZxJeIzWZnZmY2WQqUfV8gEaoYSISqRxGJEJ4RKtzxQ4cObN7cHiEBQkWamluOHGFYWtrxePZy+5AR+r2sLGj37sDSUvlJAiSEJpSWnt23b0tZmfwx2yDUsarq6I4dNyoq5PefLxS6XLsWHxv7D4dj9vkI3lIptaho87Jlzx48iGOxiCJ7rRA6W1r6y+3bx6hUXw6nRsxjS0v/bt36paFmpo/9w+7mATffrwlO1BBJD5uampnoF5bcw9Fgud0zNdUltFqLvGgghDCMpaGB/jsQlImQQ4cOhXp6v8fHB/F4+ggxEVqlr+/i49OuXTtiH2NjY2Nj4/p8eQEAoIG+e+GPegoICPD8bMOGDbL2wsLCmTNndurUyc3NLSIiQkFnbz6C9+x5vGbNUybzApN5hcm8lpv71+TJ9+/dsxKLa+xpjRCPw9GVmyFA0MUwHpdrXuvI5mIxv6LC6L+NJIQMEdKqrKwx/XwIjj+Ii+snEtUoNTurvDzz9WvNWgcnq5Pp/k47tw0QIxS6Knbi1XcaIulNMplsY3PxymkqZQoFnUNIhJCUhO5QyZ5HT27/iJDwvwd5ilD3bt1iNTRK5RpxhA4bGvrOmHH2xo3227aNdnBwtbSc3Lmz9/HjO0JCagUCAAAKp6grwkePHm3evJmo60an/1t2h8fj9e/ff+TIkWfPnhUIBHw+X0Fnbz6Cd+58WlEhKz5rhlBIaencM2f01WsuvPIWoVYdOjypqPDjcuXbH+vrt+3YMe3Tp1b/3T9VTU1LW7uSw6lRNIgtlTIoNQu+kxGSSKVGtbKvMUJkDY37+vpjPp9UpEaO9mp7dpRdV3OrgWU9Dl3/oxJpmqrh8fr6fDu701eumJiYZGQ+9hkxKfv9ChwhS4ZxZPRFV1dXTl7e7C1bDlZUEGUGsxFaQqef2rUrPzfXa9q0xRxON6k0H6F9xsYuEyf26dMHITRj3rwZ8+Z9x1cTAAAUoXHvtMqYm5unpqbWaNy5c2f//v3r8/Gf8RlhXFycqaGdGtlajdyKptlq3759XC53YK0nZzhC3S0tBzk7x5JIshYeQn2Mjd+8edOvY8dLFIqsPZpCce/UKTU1tZeJSancEa5QKCN6996zdes6Gk3+yOep1Bm+vl2trcv+e8YHJNK4QYNG1Bq3cpZM/uP33z2cnU+pqUnIpOv9W43bN3jCkh4jRroTnSorK7tx40ZISEhiYuI3vyCnjx51trAYZmbW39R0oKPjy5cvifbi4uItQUGTvbxW/vqrrLEZgmeEqgeeEaqen2mwjLm5uYeHx9ChQ9euXVteXk40+vn5rV69evHixUOGDAkKCpKfA1DDT5cIY2Ji1MjWJPRENk1AjdRt2aLlPWrlHjFC3Vu1Kiws9OrWbbKJyQEKZa2eXlcGIyo8HMdxFos1fcwYVzp9opmZK53+i48Pi8XCcfzGlSsuFhaLjIy20GjedPrYAQPYbLZEIpnh6zvG2PgcQtEI/WpoOKR79/Ly8ouRkV6GhrIxnM8Q6mpmlp2d7TtgQCiVKoskGyFnU9PCwkIulztrRWDfHYP6/zmgey/btYsW1fgr+V3jY5lM5k+aTiARqh5IhKpHEYmQhNdav79R7Nu3z9HRUSgU7t27l8vlPnnyhEql9u7dOz09fc+ePY6Ojhs2bNDU1Lx06VKdH9+8efP27dtl91QRQsHBwcT9tOajsrJSVs28Y7ueeczDCPWX216mTunk7mS2+80bJ7nWCCr1xeTJfx44gBB6/fp1RkYGnU7v3bu3rq6ubB+hUJiXl2dtbS2/VHR1dfWbN2/YbLaDg4NsUAlCKDEx8dHduyKBoGvfvh4eHkTjwwcPti9fXl1aipFIreztNx48aGNjU1lZGTR/fsbDh10xrIhCKTIw2HHypGZr2qm0czxR5cQOY7vodpQPo86eqjAcx6uqqmg0mrIDUTgMwwQCQUtYkUAikYjFYi0trW/v+pMTi8UYhrWExeWFQiGJRFKv9XTpS7S1tcnkb4yGUVQilOHz+aampnFxca6urkOGDNHT04uKikIIvX//3s7Ojsvl1vmXNyIiIjIycu/evcRbKpVqZWX1zc40MR6PJwteg2ohkhbUWBdanex89eaOldOmLWexhkkkAoQitbSirKxuPH9uaPgdy3L+MKlUSqn1vLCsrOzt27cMBgMZUk6nnMvgZE9x9Pt6yST5nqowHMf5fH5LSPmQCFUPJMKGUPj0CRqNpqOjU1FRgRCytbUVfV5Vy8DAgPi7U+dfWBKJpKOjY2Njo+jwGlXtAglY+/bt76el7fnjj9DYWC0trYHe3g+WL2/cb+FX1M6CCCFDQ0Obzu3CUi88fv3c32H0WrelahS1pokHAACaIYUkwsLCwqqqqnbt2mEYtnfvXolEQlTDmTp1qo+PT3FxMYPBOHHiRMeOHRkMhiICaHrWlqY5n27jaJhcG5NE4RDjZjd9vrRVugoh71y6rGRS8PeWTAIAANWjqEQ4YsQIkUgkkUjatm0bHR1N3Ans2bPnwoULnZycaDSagYGBKs0jPHshpJ+bjxQLxpA3QgihVCrJb+PGhUoOS45AIojOuh6ZfsnduveZkYcMNQ2+/RkAAGgBFPiMkMvlqqmp1X4OIRQKRSLR1585nTt37urVq808U9Z4cpacnOw7csqnQg4JkXRpGkeO/+Xn56fE8GQkmPRmTszp5HOOdIdfXaZa6Hz3VTg8I1Qx8IxQ9cAzwoZQ4DNCfX39Ots1NDRU8rvVuXPnd5+SlB3Ff+AIf/ApPiQx1FzHbNvA9XaGP9czVwAAaAqw1qjKSihOOvL6lBqFurLXAmczp29/AAAAWiRIhCoog5MVkhjKqS6b0WVS/1ZupJpjWQEAAPw/SIQq5VNF/omks+nszECngOG2gymkOqZPAAAAkAeJUEWwqtihKecf5z/zdxizxm2JBqWJpioCAMDPDhLhT69CxItIu3j9/V1vu6FnvUNgaiAAAHwXSIQ/MYFEGJ117Xz65X7WvU6NOGCiZfTtzwAAAPgvSIQ/JSkuvfE+JjTlvCO9w6Eh2610LZQdEQAA/KwgEf5kiKmBJ5LC6domW9zXtDdu9+3PAAAA+DJIhD+TFFZGSGJopZg/o8vkAa2aV1EqAAD4SUEi/Dl8KM89nRL5uWSSF5kEUwMBAKBxQCJs7pj8krDUqMf5UDIJAAAUAhJh88UVVkSmXyJKJkV4h2irqf7CwQAA0PQgETZH1RLBpf8vmXTYULPu5csBAAA0HCTC5kWMSW7l3DuVHOFE7xgy9H/mOmbKjggAAFQcJMLmAsPxh3n/lkzaMXBjO8O2yo4IAABaBEiEzUJCcdLh16fUKWorey90NnVUdjgAANCCQCJUsnR2ZkhiaLmQO73zRJgaCAAATQ8SodLkcvNOJkdkcLKmOPqPsPUkk8jKjggAAFoiSIRKUFLFPvO5ZFKQ2xJ1KJkEAADKA4mwSVWIeOfSoompgVAyCQAAmgNIhE1EIBFcePvP32+vDmrT78zIQ4aaBsqOCAAAAEKQCJuABJNee3c7LPWCs5lT8NBdFjoMZUcEAADg/0EiVCCiZNKxN2FmNPpfA9bZG9kqOyIAAAA1QSJUlFdFb46+OUMmkZf3nO9i5qTscAAAANQNEmHjy+S8C3kTyqpiz+gyuX8rNxKCkkkAANB8QSJsTMX8khNJZxOZKVOdAobbDqaQKMqOCAAAwDcoKhF++PABx3Hita6uLp1Ol9/KZrP5fH7r1q0VdPamVy7knk+/fO39HV/7kct7zteAqYEAAPCTUFQitLe3t7S0pFAoCKGAgICtW7fKNpWXlzs7OwuFQhaLpaCzNyWiZNK59Oj+1m5how4baEDJJAAA+Jko8NboixcvTE1Na7cvXbp02LBhly9fVtypm4YYk1x9d/tkckRnesdjw/YwaHV0FgAAQDOnwESYn5/P4/HatGlDXBcS7t27l5ubu379+p86ERIlkw4nnLTSs/ifxyYbA9W5xwsAAC2NohKhmpralClTKisrpVJpaGjooEGDEEJ8Pn/RokX//PNPQUHB1z8uEAjy8vIuXLhAvKVQKB4eHvr6zeKu42tm8uHXJ7XUNJc4/9qzdXeEEIZhyg5KsTAMU/k+IoRwHG8hPcU+U3YgCgc9VT0YhpFIpPr3lEz+dj0DRSXC/Px8IyMjhNC+ffvGjx//6dMnLS2tFStWTJ8+3dbW9puJkMVi5ebmRkZGylrMzMycnZ0VFG09vS3LPpV2jieqnNhhbF+LnpWVlVVVVcoNqWlUV1fLX9arKhzHq6ur6/Nr87PDMEwgECg7iqYgkUjEYrFs4J4KE4vFGIZJpVJlB6JwQqGQRCJJJJJ67q+trf3NX2qSon9EpFIpjUZ79uyZiYlJ+/btg4KCKBTKhw8fwsPD161bN2vWLCJf1nDu3LmrV69GREQoNLb6+8jNO5UckcHJnuLoJyuZxOPxdHV1lR1aU2ghPcVxnM/n6+joKDsQhSMSoba26q/5TiRCLS0tZQeicEQi1NDQUHYgCkckQnX1xhyZr/B5hAUFBSKRyMTEhEajrV+/XtGna3RMPiss9cLj/Of+DqPXui1Vo6gpOyIAAACNSSGJ8M6dO/fv33dycqqqqtq7d6+/v7+VlRVCaOXKlcQODx8+vHjxouxt81Qh5J1Ll5VMCoaSSQAAoJIUkgjt7e0fPXp048YNGo32+++/T548ucYO1tbWCxcuVMSpG4VAIojOuh6ZfsndujeUTAIAANWmkETYpk2bzZs3f2WHtm3brlu3ThGnbiAxJrmSfSs8Lao7w/nosN0wNRAAAFQerDX6LwzH7+U+OJF0to2+NUwNBACAlgMSIUIIJRQnHXl9So1CXdVroTOUTAIAgJakpSfCdHZWyJvQckH5zC5T+ln3UnY4AAAAmlrLTYS53LzjSeFvOdnTO08cauNBTA0EAADQ0rTERMiu4pxOiXyc/8zfYczaPsugZBIAALRkLSsR8kSVEWkXiamB4aOCddRpyo4IAACAkrWURCiQCKOzrp1Pv9zPutepEQdMtOpY1w0AAEALpPqJEMPxux9ijyaFOZp0OOi1zVrPUtkRAQAAaEZUPBEmFCcdTDhuqGmw1T2ovXE7ZYcDAACg2VHZRJjCyghJDK0U86c5jR/Qqo+ywwEAANBMqWAi/FCeezol8nPJJC8yiaTsiAAAADRfKpUImfySsNQoKJkEAACg/lQkEXKFFZHpl4h5ERHeIdpqql+HEwAAQKNQhURYKeIHXp0/xGbg2VHBehqqX0gdAABAI1KFRKijTovyOaEOC8QAAAD4fiqywCZkQQAAAD9GRRIhAAAA8GMgEf4goVAYGxur7CiaQmVl5cOHD5UdRVMoKyt7+vSpsqNoCiUlJa9evVJ2FE0hPz8/OTlZ2VE0hY8fP6anpys7iqaQlZX17t27xj0mJMIflJWVtWbNGmVH0RSSkpL+/PNPZUfRFJ4+ffq///1P2VE0hbi4uIMHDyo7iqZw+/bto0ePKjuKpnDp0qWwsDBlR9EUIiMjo6KiGveYkAgBaHFwHFd2CE0EeqqSGr2zkAgBAAC0aJAIAQAAtGik5nlBvXPnzj179nTq1EnZgXwRn89PSUnp1auXsgNROC6Xm5WV5erqquxAFI7D4Xz69MnFxUXZgShccXExi8VycnJSdiAKV1BQUFFR4eDgoOxAFC43N1coFNrb2ys7EIV7//49mUxu27ZtPff38fGZN2/e1/dpphPqAwMDzc3NGQyGsgP5IgzD8vLyWrdurexAFE4ikRQVFVlbWys7EIUTiUQsFsvSUvUrVlZXV3O53Ob8+9VYKisrq6ur6XS6sgNRuIqKCrFYbGxsrOxAFK6srIxEIhkYGNRz//qkzGZ6RQgAAAA0DXhGCAAAoEWDRAgAAKBFg0QIAACgRYNECAAAoEVrpqNGmzkcx+/fv5+Xl9enTx87Oztlh9PIJBJJRkYGk8kcNGgQiUSStefl5d2/f9/U1NTT05NKVYWfnJycnFevXpFIJDc3N/nBoqWlpbdv31ZXVx86dCiNRlNihI1CLBYnJSVlZmaSyeRevXrJD6JjMpl3797V1dUdOnSohoaGEoNsXOXl5a9everSpYtsvGh5efmtW7coFMrQoUN1dX/6qqUcDicxMVH2Vr6nubm5cXFxZmZmnp6eFApFSQE2svfv3z958kRLS6tfv36y0c4fP3588OABg8EYPHhwQ3uKg+8XEBDg5OQ0e/ZsExOT6OhoZYfTmBISErS1tU1MTBBCUqlU1v7w4UMjI6NffvmlZ8+eHh4eEolEiUE2iqNHj5qZmfn5+Y0bN05PT+/y5ctEe05OjpmZWUBAwPDhw9u3b19aWqrcOBvuzp07Xbt2DQwMHD9+vJ6e3tGjR4n25ORkY2PjwMDAgQMHdu3alc/nKzfORjR+/HgqlSr7nn769MnS0nLcuHGjRo2ysbEpKSlRbngNd/PmTT09vcGfPXnyhGiPiYkxMjKaMWOGq6vr0KFDMQxTbpyNYvfu3XQ6PSAgwN/ff86cOUTj7du3iZ5269ZtxIgRDewpJMLv9vLlS2Nj4/LychzHz58/36FDB9X4aSPweLyioqLMzMwaibB///579uzBcVwgENjZ2V25ckV5MTaOT58+CQQC4vW+ffscHR2J13Pnzp09ezbxeujQodu3b1dOfIpx9uzZtm3bEq/9/f1Xr16N47hUKu3Zs+fx48eVGlqjuXr16tixY+3s7GSJcMmSJYGBgcTrMWPG/PHHH8qLrnHcvHmzR48etdt79+59+PBhHMerqqratGlz586dJg+tkb1+/VpXV/fdu3c12l1dXUNCQnAc5/P51tbW9+7da8hZ4Bnhd7t27Zqnp6e+vj5CyNvb+/37941eE0SJdHR0as+z5vF4Dx8+HDt2LEJIQ0Nj5MiR165dU0Z0jcna2lp2M9Dc3FwoFBKvr169Om7cOOL12LFjVaCn8qqqqmRzrq9du0Z8T8lkso+Pj2r0lMvlrly5ct++ffKN165dU73vaXV19Z07d168eCH70WWz2U+fPiV6qqWlNXz4cBXo6YULF3x9fWk0WkxMTEFBAdFYXFz88uVLoqfa2toN7ykkwu9WUFBgZWVFvNbU1DQ2NpZ9e1RVYWEhQsjCwoJ4a2lpqUpdFgqF27dvnzlzJkIIw7Di4mLZ80KV6Wl1dbWnp2efPn327Nlz9uxZhFBZWVlVVZXsJ1llerp48eJFixbVWB6osLBQ9b6nUqn04MGDU6dOdXJyysrKQggVFBSoq6vLHhaqRk+JKw0vL69jx4516dKFKKpVWFiora1tZGRE7NPwnkIi/G5SqVR+CAmVSpVIJEqMpwkQXZb1mkKhqEyXpVLp9OnTzczMli5dihDCMAzDMNXrqbq6+sqVK5csWWJgYLBjxw6EkFQqRQipWE/v3bv34cOHWbNm1WiX/51VjZ56enqmpaVduXIlLS2tX79+S5YsQQhJpVIy+f//pKtGTwUCQX5+/vPnz8+fP3/p0qUlS5bw+fwaf4Qb3lNVGPvXxMzNzWX/+5BKpWw2W3appKoYDAaGYRwOh/jPJpPJNDc3V3ZQjQDDsFmzZpWUlFy9epUYB0ulUul0OovFIpZpZjKZqvHNpVAogwcPRggR42O3bt1Kp9PV1dVZLJapqSlSlZ5u3bpVQ0Njzpw5CKGSkpIjR45IpVJfX18Gg8FisYh9VKOnskGSZDJ5/Pjx06ZNQwiZm5sLBIKKigo9PT2kKr+n5ubmmpqaWlpaCKG+ffuKRKL3798zGAw+n8/n84lB3Q3vKVwRfrcBAwbcv39fLBYjhB48eGBsbKzyK74bGRl16dLlzp07CCEcx+/evTtw4EBlB9VQOI7/9ttvWVlZly9fJn7NCAMHDiR6ihC6c+fOgAEDlBOfYrBYLAqFoqOjQyKR+vfvf/v2baJdNXq6bt26mTNnEgMptbW1u3Tp0q5dO4TQgAEDVKyn8hISEog18RkMRocOHYifXgzDYmJiVOD3dNCgQbJBGDk5ORiGWRGsx5gAAAyqSURBVFpaWllZ2dnZNWJP4Yrwuw0ePNjS0tLX19fDw2Pfvn0rV65UjUl1hOrq6sWLF3O5XITQnDlz9PT0du3ahRBas2bNb7/9VlRUlJiYWFlZ6efnp+xIG+rIkSPBwcETJkxYtmwZQohMJh85cgQhtHz5cg8PDzU1tYqKips3b8rP1vpJbd269cOHD/b29qWlpWFhYcuWLdPW1kYIrVq1ytfXVyAQ5OXlJScnh4WFKTvShpLPcEFBQW5ubp07d0YILV26tG/fvtra2iKR6OLFi69evVJaiI1k+fLlQqGwdevWmZmZ586d+/vvvxFCJBIpKChowYIFubm5L168wDBszJgxyo60oXx8fLZu3RoYGEgMbJ4/fz4x2isoKGj+/Pk5OTnPnj2jUCje3t4NOQtUn/gRfD7/9OnTBQUF7u7uQ4cOVXY4jUkkEp0+fVr2VlNTMzAwkHj9+PHjW7duGRkZTZ8+3dDQUDnxNZ6EhISEhATZWzKZTIyXQQilpaVFRUWpq6tPmjRJBSpt5efn37hx4+PHj7q6uv369evbt69s0+vXry9fvkyj0YjCZ0oMstGdP3++V69esm/f27dvL1y4QCaTJ02aVP9Sds1Wamrq3bt3mUymmZnZ6NGjbWxsZJvi4uLu3r1Lp9OnT59ODG7/2fF4vNDQUCaT2aNHj1GjRsnaY2NjY2JiTE1Np02b1sCeQiIEAADQosEzQgAAAC0aJEIAAAAtGiRCAAAALRokQgAAAC0aJEIAAAAtGiRCAAAALRokQgCateY81V0sFhNrL/wYiUTC4/EaMR4AfgwkQgCatStXrvzyyy9NfNKysrK9e/dOmTLFycnJ1tb2xYsXNXYoLCz09fXV0dExMDAwMzPbuXOn/Izkbt262dYiW68AIVReXj5lyhQajaanp9e6dWuiIAYAyqI6a4MBoJIGDBggW2G5ybx7927FihUODg46OjqpqakCgUB+a3V1tYeHB4vFOnjwYIcOHa5du7Zq1Socx3///Xdih6lTp1ZXV8v2T0tLCwsLmzdvnqzF39//xYsXISEh9vb2wcHBU6ZM0dPTk180BIAm1ZCqvgCoKj6fX1RUJBKJ6txaUlIiFAq/8vHy8nI2my17W1VVVVxcLBaLv3leFotVWlpanwgFAgGHw/nSVi6XW1xcXOcmDodTUlLyzYPz+Xwcx4lrtQcPHshvjYiIQAhFRkbKWgIDA3V0dCoqKuo82owZM6hUalFREfH23r17CKGDBw8SbyUSSceOHTt37vz1kABQHLg1CloQHMddXFyImjUyBQUFJiYmhw8fJt6mpaUNHjxYT0/P3Nzc2Ng4KCiIKN2HEPr48ePw4cO1tbVNTU21tbU7d+4cExMjO05oaKiRkdHjx4979uxpYGAwaNAghFBcXFznzp21tbUZDIampmavXr1EIlGdsW3bts3Y2JhOpxsZGenp6a1du5Zo37dvX6tWrYjXUqnUyMhoz549S5cuNTAwMDY2trKy+ueff+SPc/HixU6dOunr6zMYDF1dXdlVGkIoMjLSzs7O2NjY1NTU1tb2ypUrX/pCaWhoEAtz1yklJQUhRNR1Inh5eVVWVhIZrgY+n3/hwgVvb28Gg0G03Lx5k0wmy0rGUyiUsWPHJicn5+bmfumMACgUJELQgpBIJH9//3PnzpWUlMgaT5w4wePxiL/LHz9+dHd35/P5169fT01N/fPPP3fv3i3LSWVlZXZ2dleuXMnIyLh7966ZmZm3t/fHjx+JrUKhsKysbOLEid7e3k+ePNm5cyefzx8zZoyNjc2LFy+ys7NjYmL69u2L17W67+XLl9esWbN69eqMjIy0tLRTp07J6ozzeLyioiLZnmVlZTt27MjPz79161ZcXJylpeW0adPKy8uJrefOnfPz82vduvXdu3fT0tJOnz6tqalJbAoLC5s4caKXl9fz589fvXrVr18/X1/fJ0+e/MCXkaj+Kvv/gew1kSBrOH/+PI/Hk3/M+enTJzqdbmZmJmtxcnJCCKWlpf1AMAA0AmVfkgLQpEpKSjQ0NHbs2EG8lUqlrVu3Hj9+PPF25syZpqamZWVlsv03bNigpaUlEAhqH6qyspJGo+3evZt4GxISghDasmWLbAeihNPDhw+/GVVQUJCpqWmdmzZv3kylUonXRBluFxcXqVRKtBAVhS5dukT0xdLSsmvXrrKtMmKxmMFg+Pn5yVqkUqmLi4uvr+/XA6vz1mhkZCRC6OTJk7IWoizXokWLah+hT58+DAZD/rZwnz59OnbsKL8PcSl55syZrwcDgILAYBnQstDpdF9f35CQkOXLl5NIpFu3buXm5soqT925c8fe3l6+Xh2NRquurn7//n3Hjh0RQqWlpZGRkTk5OcS4f3V1dVnVUMLo0aNlr9u2bauvrz9nzpy5c+d6e3vL7nDW5uLiUlJS4uvrGxgYOGjQIF1d3a90YciQIcQ1GULIwcEBIZSXl4cQysjIKCgoWLVqlWyrTHJycnFxsY2Njfy93NatW6empn7lRF8yevTojh07LliwoKioqH379tevX5c/rLysrKz4+PjVq1fL1+zEMKxGhMRoIAzDfiAYABoOEiFocebOnXvu3LnY2FgPD4+jR4+2b9++f//+xCYmk1lSUuLv7y+/v6GhIYvFQgg9ePBg5MiRpqamAwcONDQ0pFAoVCq1oqJCfmf5O376+vo3b95cvXr14sWLFyxY0KlTp9WrV0+aNKl2SGPHjt2/f//+/ft9fHzU1dUHDRq0c+fOTp061Rm/fDFIDQ0NhJBQKEQIsdlshJCVlVXtjzCZTITQ4cOHjx49Kt+uo6Pz5a/TF2lqasbGxq5evfrUqVNMJrNXr17Hjh0bN26cfN8Jx48fRwjVeChrbm5e43Egh8NBCBkYGPxAMAA0HCRC0OL069fPycnp2LFjDg4ON27c2LZtG4lEIjbp6el5eHgQt/5q2759u52d3bNnz9TV1YmWkydP1tinxrVO79694+LiysvLHzx4cPDgwcmTJ1taWsoXUpdZsGDBggUL3r9/f+fOna1btw4ZMuTDhw9qamr17xeRSIicVwNRtvTo0aPjx4+v/wG/wtTU9MSJE7K34eHhCKEePXrI7yORSMLDw93d3e3s7OTbLS0tS0pKuFyurJhqdnY2QqhDhw6NEhsA3wsGy4CW6Ndff42Ojv7rr79IJNKUKVNk7f379793715paWmdn/rw4UPnzp1lWfDly5fEleI3GRgYjB49Ojo6GiH0/Pnzr+xpa2s7d+7cTZs2FRQUEDc8669Tp04mJiZRUVG1N7m4uOjp6dW5qeGkUunu3bvbtGlTI8Ffv369qKio9moAHh4eEonk+vXrspbLly+3adPG3t5eEeEB8E2QCEFLNGXKFHV19YMHD44bN042PhMhtH79+qqqqlGjRsXHx1dVVRUVFd28eXPOnDnEVmdn56tXr8bHxwuFwsePH0+ZMuUrcwwQQvHx8evXr09OThYIBBUVFUeOHEEIdevWrfaee/fuPXXqVG5urlQq/fjx4/nz501MTL7yTLFOVCp1w4YN9+7dmzNnzrt376qqqhITE4mTamlpbdiwITo6euHChe/evSOeep44cWL//v1fOtrFixejoqKItB0XFxcVFXXjxg3Z1p07d8bExGRnZz969GjMmDEpKSlHjhypMfH/xIkTenp6smkSMqNGjXJ0dFy9evWzZ8/YbPamTZuePXu2atUq2XU5AE1N2aN1AFCOWbNmIYTi4uJqtMfHx3fp0kX2C6KlpTVhwgRiU25urrOzM9FOo9GOHDni5OQ0efJkYisxalR+kvvz58+tra1lh9LX1yeWIqtt69at8o/rHBwcnjx5QmyqPWp0+/btsg8SLfKH3b17t+yWI5lMnjp1qmzT/v37TUxMZGcxNzcPDg7+0tdHduErY2NjI9vq4eEh3379+vUaHy8uLlZTU/v111/rPHhOTo6rqyvxcQ0NjXXr1n0pDACaAAmva1YTACrP29v73bt3aWlpdV6I5ObmMplMPT29tm3bEgNSCFKpNCcnp6KiokOHDjQarT4nKiwsLCgooNFotra28oeqQSKR5OTklJeXm5mZWVtby541Er+otQeCfoVIJMrIyBCLxW3atJHPfET8b9++5fP55ubmlpaW33XYGgoKCgoKCvT19e3t7X/sYi47O7u8vNze3l6WuQFQCkiEoCV69epVz549g4ODietCAEBLBokQtCyvX7+ePn16ZmZmly5dHj16VPsGIACgpYFECFqWoqKiq1evmpqaDhs27Cs3KgEALQckQgAAAC0aTJ8AAADQokEiBAAA0KJBIgQAANCi/R/4MJgMgHqU6wAAAABJRU5ErkJggg==", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = 1\n", "V = r.^(0:n)'\n", "p = Polynomial( V \\ (y/1e6) )\n", "\n", "scatter( pop'/1e6 , title=\"population of UK\", label=\"testing data\", xlabel=\"years since 1970\", ylabel=\"/millions\",color=\"red\")\n", "println( \"training error: \", norm( p.(r) - y/1e6 ) )\n", "println( \"testing error: \", norm( p.(1:54) - pop'/1e6 ) )\n", "scatter!( r, y/1e6 , title=\"population of UK\", label=\"training data\",color=\"blue\")\n", "plot!( p, -5, 60, label=\"model\" )" ] }, { "cell_type": "markdown", "id": "45b48b0c", "metadata": {}, "source": [ "We can see that the testing error for this model is actually worse than the polynomial interpolation! The model is too simple to capture what is actually happening. We can add complexity to the model by choosing a higher degree polynomial: $p(t) = c_1 + c_2 t + c_3 t^2$ and so we want \n", "\n", "\\begin{align}\n", " \\bm y = \n", " %\n", " &\\approx \\begin{pmatrix}\n", " p(t_1) \\\\ p(t_2) \\\\ \\vdots \\\\ p(t_m)\n", " \\end{pmatrix} \n", " %\n", " = \\begin{pmatrix}\n", " 1 & t_1 & t_1^2\\\\\n", " 1 & t_2 & t_2^2\\\\\n", " \\vdots & \\vdots \\\\\n", " 1 & t_m & t_m^2\n", " \\end{pmatrix}\n", " \\begin{pmatrix}\n", " c_1 \\\\ c_2 \\\\ c_3\n", " \\end{pmatrix}.\n", "\\end{align}\n", "\n", "Doing this indeed reduces the testing error:" ] }, { "cell_type": "code", "execution_count": 289, "id": "18b8aa64", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training error: 0.7000921851544214\n", "testing error: 2.4978049313214417\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzddUBUWRcA8PMYuhukSwlBUFQswKBEsXPF7u4OUFEsVNwVFWsx17VjbSxUXARERFop6ZQchonvj/ftOA4DIjIMzJzfXzN37rvvvJldjve9GwSLxQKEEEJIVIkJOgCEEEJIkMQFHQBComLx4sViYmKBgYEt0lpkZOSRI0c8PT1Hjx7dIg22rFevXj179iw7O5vBYCxevNja2lrQESHUIOwRItRKzp49e+7cuZ89KioqKjg4OCkpias8LS3t1KlTb9++baHoWlJgYGC/fv02bdp07ty5y5cv5+bm8qw2ZMgQgiD++uuv+h+9e/eOIAgzMzN2yZ07dwiCGDhwIFfNzMxMc3NzgiAmTZpUV1fXgleBRAcmQoTatDt37sydO/f169dc5Zqamv379zc1NRVIVI3btm2bgoJCUlJSeXl5SUmJq6srn06UlJTUr1+/5OTkefPmnT17VkJCgk8nQsINb40i1C45Ozs/ffpU0FHwUFhYWFJS4uTk1KlTJ76e6OPHj25ubjk5OWvXrt21axdfz4WEGyZCJDxqamri4+OVlJTMzMy+fPny6NGj0tLSTp06ubm5SUpK1q+fmpr64sWLoqIibW3tAQMG6Ovrc35aVlb26dMnLS0tPT29xMTE58+f19TU2NraOjs7i4l9u5VSXl6ekpKioaFhYGDAeXhaWlpJSYmFhYWcnFwjMaempsbExGRnZ4uJiVlaWjo7O3N2a+Li4sj7ihkZGVFRUWQh2SYZnra2tq6uLmeD5eXljx8/zsjIkJSU7NatW69evQiC4Kzw7t07MTExW1vbmpqau3fvpqena2houLu7a2lpNf71sr19+zYyMrKmpkZfX9/FxUVFRYX9UUxMzOfPnwGgrq6ODFhOTs7CwqKJLTfd27dvBw8eXFxc7Ovr6+Pj0+LtI9HCQkhYxMbGAoCXl9fBgwfFxb/9I8/S0jI1NZWzJpVKnTZtGmeGEBcXX7lyJZ1OZ9e5evUqACxfvnzZsmWc/8s4OjoWFxezq92/fx8AFixYwBWMt7c3ALx+/ZpdoqSkpKqqyn5bXV1dv89kbGz89u1bdh2edz7fvHnDYrH+/vtvAFi7di3nSS9cuMCZlgCgZ8+eaWlpnHXk5eXV1dUjIiL09PTY1eTk5G7duvXDbzgnJ8fJyYmzfQUFhePHj7MrcJ0dAHr06NFQa56engBw8eLF+h9FR0cDgKmpKbvk9u3bADBgwAAWi/X06VMFBQWCIA4ePPjDmBH6IXxGiIRNZGTk+vXr9+7dm5aWFhsbO2PGjISEBE9Pz5qaGnadmTNn/vnnn3Z2dvfv3//06dP169cNDQ0DAgLWrVvH1dqlS5fOnDkTEhKSmZkZERHh6ekZFhY2btw41i9PwK2rq5OWlj5w4MDz589TUlJev369dOnSjIwMLy+v8vJysk5ISMiUKVMAYNWqVY/+01AH6/79+5MmTaLRaIGBgUlJSW/fvp0wYUJERISLi0tFRQVnzerqai8vL1dX10ePHv37778rV66srq6eOnUq+7w8UalUDw+PFy9ejBgx4s2bN8nJyceOHRMTE5s9e/alS5fIOtevXz99+jQAdO/enYz2jz/++MUvisudO3cGDx5cXV196tSppUuXtmzjSEQJOhMj1GLIHiEA7N+/n7Pcw8MDAP744w/ybWRkJACoqqqWlJSw63z+/FlSUlJcXDwjI4MsIXuEAMDZVaLRaGQeevDgAVnS7B4hT2vWrAEAzj6Wr68vAJw6dYqrJlePkMlkdu7cGQDOnDnDrsNkMl1cXADA39+fXSgvLw8Aixcv5mxtxIgRAHDt2rVGYjty5AgAODg4cPabr1+/DgD6+vp1dXVkSWJiIgC4u7s3fqWsZvUI1dTUxMXFpaWlm9J/RaiJsEeIhI2CgsKcOXM4S1auXAkA5J9sALh27RoAzJ07l/M+nrGx8YQJE+h0+s2bNzmPNTc3Hzp0KPuthITEkiVLOFtrWcOGDQOAiIiInz0wOTn548ePBgYGv/32G7uQIIi1a9fCf5fMafXq1ZxvyYGdaWlpjZyCvOTVq1dTKBR24fDhw62srLKyslpnIkdpaSmdTpeXlzc2Nm6F0yERgYkQCRtTU1Ou8Sl2dnYA8PHjR/JtfHw8AHTt2pXrQHt7e85qpC5dunANNuFq7Vd8+vRp9uzZ1tbWysrKBEEQBNGvXz8AKCoq+tmmyHhsbW05sxQAdO/evX60cnJynA8IAYAcKZOXl9fIKcjvrVu3bpyFBEGQJeSn/Obk5DR//vyioqKBAwfGxcW1whmRKMBRo0jYaGpqcpWoqalRKBT2c7LKykqe1cgSrsdpTazWDB8+fHB0dKysrHR0dPT09FRRURETE8vPzz9w4ACDwfjZ1hq6KGVlZUlJyerqagaDwc6RMjIyXNmdHAfLavTBJ3mK+oNLyZJmfCHkSalUav2PyELO0bkkgiAOHz4MAEeOHBk0aFBoaCiuWYN+HSZCJGzy8/O5SoqKihgMhqKiIvlWQUGBZzWyhF2toda4qpF/rOunLjJtNGL79u1fv349ceLEzJkz2YVPnjw5cOBA4wfy1NBFlZaW0mg0eXl5rp5i805RVlaWn5/PdVuS7EdyfW9NoaSkBAA5OTn1P8rOzgYAZWXl+h+RuZDFYh09ehRzIWoReGsUCZvU1FSu3gk58oL955J8wZ6Wx0Y+5bKxseEsfP/+PVc/ias1bW1t4JWBEhISGo/z/fv3ADBhwgTOwvpRkTMgf9hHJOOJiYmh0+mc5eRFkeNofhHZCDnUiI313+CjZmQjskGeXxR5o7WhNgmCCAoKmjdvXkFBwaBBg/AeKfpFmAiRsKmqqjp69Cj7LYvFCggIAAD24tRjxowBgODg4OLiYna11NTUv//+W0JCghw/yZaSknLjxg3229ra2t9//52zNSMjIzExsbCwMM4u4LVr1+qvDspFXV0dALKystglX79+3b9/P1c1HR0dAPjy5UvjrXXs2NHOzu7Lly+cy5kymUx/f38AGDt2bOOHNwX5ve3bt48zK1+9ejUpKcnY2Jh8wvpTRo4cSRDEtWvXkpOTOctLSkqCg4OB40uuj8yFc+fOJXNhizyyRaJLoGNWEWpJ5PQJXV1daWnpHTt2xMXFvXnzhhxF2blzZyqVyq45Y8YMALC2tr5582ZcXNzFixfJdWE2btzIrkNOnzAwMFBSUjp69GhiYuLTp08HDRoEAJ6enpzn9fLyAgBnZ+c7d+6EhoZu2rRJRkaGnAvfyPSJjRs3AoCtre3du3eTkpKuX79uY2NjYmICAMOGDWNXi4uLIwhCVVV1w4YNR44cOXbsWH5+PovXhPrQ0FAKhSIjI7Nnz57Y2Njnz5+TSd3CwqKqqopdjZxQz/XVkcNKV61a1cjXW1tbS2Y7T0/P0NDQuLi4AwcOyMvLk8mMXa3p0ydYLNbChQsBQENDY8eOHQ8fPnz69GlgYCD5JQwePJjJZLJrck6oZ2MymXPnzgUATU3NuLi4ppwRofowESLhwV5Z5ujRo5xrqtnZ2bFnB5JoNNrChQs5H5tJSkpu3ryZ8y8vmQhXrFixbt06zqElbm5uZWVlnK19+fKF8yaejIzMn3/++cN5hFVVVe7u7pz/KnV2dn727BlXImSxWIGBgZyjYBpZWeb69etcg1mcnZ2zs7M56zQ7EbJYrIKCAnJSJpuamtq5c+c46/xUIqTT6T4+PuTURjYJCYl58+ZxJm9WA4mQhbkQtQSChTvUI2Hx4cOHLl26eHl53bp1Kz8//8mTJ+Xl5ebm5o6OjjyHimRnZ4eFhZWVlamrqzs7O2toaHB+eu3atdGjR69YsSIgICAtLe3ly5dUKtXW1rZHjx5cQy4BoK6u7unTp2lpaUpKSq6urmpqagUFBZWVlTo6OtLS0mQdchFOsrvDFh0d/eHDBxaLZW1t3b17dxqN9uXLF1lZWfLRI6fy8nJyWoWurq6UlFRlZWVubq6qqqqamhpntZqampcvX37+/FlKSqpr1662trZc7aSnpxMEYWhoyFlYVVWVn5+vpKTE1RpP8fHxkZGR1dXVhoaGTk5OXJNV6urqsrKyZGRkOnTo8MOmSJWVleHh4RkZGXQ6XV9f38HBgbxvzKm6ujovL49ns0wmMz09HQAUFBS4fkSEmgITIRIenInw11vjTIS/3hpCqM3CwTIIIYREGiZChBBCIo1CLumLkBAQExNTU1MbOHCglZXVr7dGoVD09PT69++Py1oiJNzwGSFCCCGRhrdGEUIIiTRMhAghhEQaJkKEEEIiDRMhQgghkYaJECGEkEjDRIgQQkiktddEWF5e3rz9S1sNk8kUdAh8JwrXSK7JK+go+E4UfkpRuEb8z7V52msizM7OPn78uKCjaExVVZWgQ+A7UbjGuro6Go0m6Cj4ThR+SlG4RhqNVldXJ+go+K7Ff8r2mggRQgihFoGJECGEkEjDRIgQQkikYSJECCEk0jARIoQQEmmYCBFCCIk0TIQIIYREGiZChBBC7UYNnRpTGNeybWIiRAgh1G78Hnk8PC+yZdsUb9nm2rgDBw6cP3++dc7FZDLFxIT83xk/e436+vrXr1/nXzwIIeH28su/7/I/BDrtaNlmRSsRxsTEDBs2bMiQIYIORBSVl5ePHj1a0FEghNqrstqv+yOCfPqtkRGXbtmWRSsRAoCRkZG9vb2goxBFpaWlgg4BIdSO7Q4/NNTMzVazc0VFRcu2LOT37hBCCAmBmyn3impKplhP4EfjmAgRQgi1aTmVeadjL27uu0pcjMKP9jERIoQQarsYLMb2V/um2ow3UNTl0ykwESKEEGq7Qj5ckpeUH9HJk3+nELnBMgghhNqLxOKUO6kPjg8+SADBv7Ngj7CpWCxWSEiIo729tIQEQRCGmpqL5s3LzMwUdFxQV1fHYrEEHQVCCLWwGjp1+6uAJd3nqMmo8PVEmAibpLa21svNbfO8eeOio9/S6Z8AjhYW5p8+3cXS8smTJ81uNjIyMikp6WePio+Pf/fuHfutnZ3dq1evmh0DF39///nz5zdS4dq1azU1NS11OoQQasjBt0fttKz7G/Tl94kwETbJmhUr8l6+fE+lLgawATABGAxwmUbbU1MzyssrLy+vec0eO3bs5s2bP3vU5cuXT58+zX578OBBS0vL5gXQDJMmTcIZgQghfnuRFR5bEL+w28xWOBc+I/yxoqKiI8eORTMY9Tvnc1is2wxG4IED/rt3/2yzb9++jYiISE1NLSkpsbW1nThxIpPJDAkJCQ8PV1dXnz9/vr6+PgCkp6cfPXo0OztbU1Nz6tSp0tLSjx8/rqmpWbdunaGh4fz585OTk83NzdXU1G7evCknJ5eRkREWFtalS5fFixdLSEgAQGFh4cGDB3NzcydOnPjp0ydnZ2euxMlkMoODg//99197e3sGg0EWUqnUs2fPRkZGEgTh6upKLgoTHBxMp9N37twpLy8/bdo0HR2dM2fOxMTESElJDRs2zN3dvTnfL0IIfa+ounh/xJGdzptkJWRa4XTYI/yxp0+fmktLWzfw6YTa2oc/36sDAHV1dXV1dT09PXt7e2NjYwDw9va+ffv28OHDNTQ0evfuXVRUxGKxBgwYoKamNnXq1C5dunz58kVRUVFHR0dDQ8Pe3t7CwgIAgoKCyEeVjx8/njFjRlZW1siRIy9evOjn5wcANBrN0dGxqqpqzJgxJ0+e3Lx5c0pKClckq1evPnfu3KhRo4qKig4fPkwWFhcXf/782cvLy8XFZdu2bcHBwQDQqVMngiC6dOlib2+vpKSUmZlZUlIycuTIfv36LViw4MaNG834HhBCiBOTxdoZfnCU+RAr9U6tc0bsEf5YXl6efsOjUQwAcgsKmtGssbGxiYlJx44dx44dCwDv379/9uxZRkaGhITEkCFDEhISzpw5M3/+/Ozs7BEjRnTs2JF9oJWVVXFxMXkUl759+/r6+gIAhULZuXPn1q1b//nnHxkZmYMHDwLAgAEDdHR0uA6prq4+fPhwUlKSoaGhl5dXVFQUWa6rq+vv70+lUvPz85cvXx4SEjJnzpz+/ftTKJShQ4eS7XTo0MHa2rqmpiYvL2/evHl//fXXiBEjmvFVIIQQ2+XEmzRGnXdnHn/i+AQT4Y8pKCiUN7zHQhmAopzcr58lLi6utLSU7OQBQFlZ2cSJE2VkZLZu3Wpvb29paTl06NClS5cqKio20gj7cA0NjZKSEgD4/PmztfX/e7MyMjJmZmZch2RkZMjKyhoaGpJvu3btWlhYCAAlJSXjx49PS0szMjKqqKgoKyurf7qsrKxx48Z9/fpVV1e3qKhIQUGh+dePEEIAaWUZF+OvHfXYJ0a03g1LvDX6Yz179oyqqWlofMhjCqVn3xYY1KSsrGxpafnpP8XFxX/88QcArF+/vqCgYNu2bc+fP1+wYAEAEATR0HwJguCeaqOmplbA0WElkxwnJSWlqqoqOp1Ovv369Sv54tChQwYGBqmpqY8fP/bx8eF5xp07dw4YMCA+Pv7Ro0dLlizBWRwIoV9BY9C2vdq3yH6mtpxma54XE+GPWVlZ9erRY604j95zHMAJgliwbFnzWlZXV//y5Qv5um/fvrm5uexBpGVlZTk5OVVVVZmZmdLS0u7u7t7e3tnZ2VxH/ZCHh8ebN2+eP38OACdPnszKyuKq0KFDBwsLC3IYamFh4ZUrV8jyqqoqSUlJAKDRaEFBQZwxsxth16muriYfIiKEULP9HnWio6qpi5FzK58XE2GTnDh37raCgreERPp/JXUAZwEGSEmtXLOmV69ezWt22rRpL1++1NbWnjVrlrKy8vXr1zdu3GhlZWVra9u1a9eUlJTy8vK+fft27ty5V69efn5+27dvB4AxY8YUFRVpa2sPHjwYACQkJBrZHVdbW/vixYvz58/X0dGJiYnp2rWrvLw8ZwWCIE6dOuXn59etW7dBgwY5OTmR5fPmzbt//363bt26dOlibm7Orr958+YJEyaoqak9ePBg2bJlwcHBPXr0sLe3x82tEEK/4t+cqMjcmKXd5wjg3Kz2KT4+3tLS8mePmjJlSkhISPPOmJmZOdLTU4wgTGRlu8jLy0tIGGppnTlzpnmtNaK4uDg3N5fJZLJL8vLysrOzOUuap6SkRElJKSsrq/5HTCYzKyuLXKSGjU6nZ2Rk1NTUNNImjUZLT0+n0WhNObuKisrPxixwtbW1VCpV0FHwXXl5uaBD4DtRuEYqlVpbWyvoKJqjpKZ01LVpcYUJTanc4j8lDpZpKn19/Wv//FNYWBgVFVVTU2NkZGRra9tIV6zZVFVVuUq0tLR+pcHly5fLyMhIS0v//fffU6ZM0dPTq1+HIIj65RQKxcDAoPHGJSQk2ANtEEKoGZgslt/r/cPMPDqrWwgkAEyEP0dDQ2PQoEFUKrUdjZBctGjRy5cvqVRqcHBwnz59BB0OQgh951LC9Vo6bbJ1682X4IKJsKkYDMaxY8cCA0+kpLxnsZjy8mrDhnn5+m7gnOHXCioqKmRkZMR5jdwhlZaWqqh8twaOqampqalp805XVVUlLi4uJSXVvMMRQqhxSSWplxKuH/UIaM35ElxwsEyTVFdXOzm5rVx5IDl5IYuVDJBXWXn98mWWjU23u3fvNrvZFy9evH///qcOcXJyCgsLa+hTFoulqqrKngLx6+bOnXvixImGPi0vLw8JCWmpcyGERA2VTvV7FbC4+5xWni/BBRNhkyxevCI6uoZKfQcwE8AUQAvAsa7uz9raI6NGjW/6ZAYuZ8+effDgwU8dcvjwYVtb24Y+JQji3r17ci0xwb8pCgoKVqxY0TrnQggJn/1vj3bR7DzI0FGwYeCt0R/Lz8//88+TTGYcgHy9D70Brh04EBgQsPdnm62/6PaGDRsmTpx49OhReXn53bt3Hz9+PDw8nEaj9ezZc/78+eQK2hEREVpaWqqqqnfu3JGUlMzIyHj06JG1tfXq1atlZGQAIDQ0tH///uLi4seOHXNwcLhx40ZSUpKzs/PcuXPJ6faxsbFBQUFUKnXBggV3795dsmQJ1/CcioqKPXv2pKSkeHp+2xI6Ly/vxIkTCQkJsrKyY8eOdXNzA4CgoKDq6up169YBwLp1675+/Xry5MmUlBQlJaUpU6bg80iEUCOeZb76WJh4wvOgoAPBHmETPHv2TEamM4A5z09ra8fevv24Gc3q6Ojo6up27NjRxcWFXAVt79698+bNc3JycnNzY7FYqamp48ePnzlz5r1791atWkUeFRISQi6x/eTJkzlz5hQVFc2aNSs0NHTLli0AwGKx9u3bV1tbCwAXL16cMmWKgYHBxIkTd+/e/ddffwFAVlbWgAEDbGxspk6dun37dn9///r3Ub28vLKyshYsWPD27dv79++ThRkZGYqKivPnz3d1dZ01a9bTp08BoEePHhISEi4uLi4uLtLS0ikpKXp6egsXLuzbt+/IkSM/fPjQjK8FISQKcirzDkQc9XVcIyMuLehYsEfYBAUFBSyWbsOf6xcV5TejWV1dXV1dXTMzMxcXF3bh1q1b2W93795dUVFRWFi4bt26SZMmBQYGcrXg4OCwfv16ACAIguyWcZk0adKMGTMAICEh4cmTJxMnTjx58qSXl9fChQsBwNDQsP4gmqioqISEhIcPH0pKSjo6OrLv3Do4ODg4OOTn5+vo6EyePPnKlSsDBgxgJ0KyjouLC5PJJOuMHDny+vXrNjY2zfhmEELCjc5kbH8VMNl6XEcVE0HHAoCJsCmUlJQIopGtaEvk5ZVa6lxWVlbkCyqVOnHixMTERDMzMwqFkpubW78ye8Cqmpoaz81yOSu8ffsWANLT09mbEZqYmEhLc/9b7NOnT+bm5uTCaQRBsDNZbGzsxIkTlZSUtLW1s7KyeM4vDAsLmzlzpra2toaGRkpKSr9+/X7y6hFCIuFU7HklKYXRFkMFHcj/YSL8sV69elGpswGKAdTqf0qhPHB27t1S52LPi7h06VJlZWV8fDxBEImJibdu3apf+YfT+euvwa2urp6Xl0e+Li0tpVKpXBVUVFQ4cyq5hQUA+Pj4LFiwgOxK7tq1KyIion77a9eu3bFjB7k/1PLly+s3jhBC7/I/PPj85ITnQQK4/0AJCl+eEdbV1ZV+r66ujv1pampqYmIiq+GdCgoLC2NiYtrOn9FOnTr16eMsIbECoH7M0QRxetmyhc1rWVNT8/Pnzzw/otFoDAaDxWIxmcy9e396JE5Dxo0bd/78+djY2Nra2i1btlAoFK4KDg4Oubm55CPA6Ojoly9fkuW1tbXkj1hYWHjq1CmyUF1dvbKykr2jRW1tLbmLRWZm5sWLF1sqZoSQ0CilfvV7vX9Dn+Uq0sqCjuUbviTCZ8+emf7HyMhIVVWVnC1HpVI9PDzc3NxGjBjRt29fntPd9u3bZ2FhMXfuXGNj4/DwcH6E1wznzp1QVn4iKTkaIP6/smqAY5KSg3x9Nzd7vemZM2d+/PjR0NBw6dKlAKCiosLu5E2YMIFKpZqYmJibmxsZGbHnyCsoKJDDR8lV08hCcXFxJSUlACAIQklJieyoKSgokHc4AUBKSoqcU9GzZ889e/ZMnDjR2trayspKUlKSa4kcRUXFc+fOTZo0ycrKavny5cOHDyfPsmnTpt27d1tbWw8cOHDo0KFka0pKSuvXr+/Zs6epqWl2dva2bduWLFliY2MzcuTIUaNGycrKNu9rQQgJJRaw9rw5NMTUxV67wTlggtGyS5fWd+bMmY4dO5ILRh85cqRHjx61tbUMBsPDw2Pr1q1clbOysuTk5JKSklgs1uHDh+3t7RtqtvUX3c7Lyxs7dhKFIiEtrS0ra0qhSBkYmF+5cqV5rTVRWVkZ/1Z8joiI0NTU5PkRk8ksKSmpX1hUVET2UxtCp9OLiop4foSLbrdlorAgtShcYxtfdPvCx6sLH6ylM+m/2E77W3T71KlTM2bMIPsoly5dmjp1KtlNmTlzpo+PDznon+3y5ct9+/bt1KkTAEydOnX58uWpqan1N1UXCC0trb//PldeHhQTE1NTU2NsbEzGyVdkP69leXl5WVlZ0Wi0S5cu7dq1i2cdgiC41mkjC9XUeDwl5UShUH5YByEkghKLUy4lXD/mEUAhuJ/ICBx/E2FaWtqrV6/Onz9Pvs3IyDAx+f9gWVNTU3I+HKfMzEx2BTk5OS0trYyMDJ6JkMViVVdXP378bQKfnZ2durp6y1/D9xQVFdk79rVTe/fujY6OFhMTW7RoUbPXIEUIoaarqqve+nLvyp4LtQS6lFpD+JsIT5w44eHhoaOjQ76tqqpiP9aSlpaurq5mMpmcQx+rqqo4HyzJyMhUVlbybLmioqKoqGjnzp3sksmTJ48ZM6bxeMihHMKkurq6rKyM/Q3XV1xcLCcnxzlNwsLCwsJCMHudAEBFRYWgTt085FaLNBpN0IHwV0P/owkTUbjG2tpagiDYgwPajl2Rh7pp2Ngpd26RvwA/9VNKS0uT4yoawcdEyGAwzp49e+jQIXaJlpYWezh+SUmJpqYm1wQAsgvIfltcXKytrc2zcUVFRQMDgydPnvxUSI1s2tBOPXv2zM/P7/Xr1w1VGDdu3IIFC0aPHt2aUTWiHW1fRSIToSjsv9HufppmEPprlJSUbIOJ8GbKvdzq/C1Oq6UoLRZYy/6UfFxi7f79+7W1tUOGDGGX2Nvbs/9kv3r1qv5gS3t7e/ZI0aSkJCqVyp79jRBCqN1JK8s49f6Cr+PaFsyCLY6PPaRTp05NmTKFs0+6aNGigQMHduvWTVZWds+ePRcuXCDLu3btunv3bjc3t6FDh65evXrlypVDhw719fWdPn26oqIi/yIUrJcvX8bFxUlLS1+5csXY2NjPzy8qKiooKEheXt7X19fIyAgAaDTagQMH3rx5o6WltWzZMvYtzRMnTty+fdvQ0LB79+7sBquqqgICAqKjozLmqAIAACAASURBVHV1dVevXk22gBBCgkKlU31e7lloP9NAsZFVKgWPXz1CBoOho6Mzd+5czkJ7e/urV6/euHHjzJkzJ06cIHcwAAB3d/cOHToAgLi4eGhoaFVV1Z49e9zc3AICAvgUXluQmJi4cePGlJSU9evXp6WlDR8+/NSpU8uWLVNWVvb29ibrTJ06NSwsbPXq1ZaWlr179yb3ezp8+PDBgwdXrFjh7Ozs6+tL1mQwGAMHDvz69euGDRu6dOnSr1+/srIyQV0aQggBwP63R200LN2M+ws6kB/gV4+QQqH8/vvv9cvJnQq4CjkH8RsYGBw9epRPUdW3M/zg6y8RrXAicTHx31399b//Z5GBgcGOHTsAYOXKlZ6ennfv3pWVlbWxsVFTU6urqyssLLx69WpOTo66unqfPn3Cw8OPHz++devWQ4cOHTp0yNnZGQDi4+Pv3bsHAPfv36fT6eQ/HXr27PnkyZMbN25MmzatFS4NIYTqu/fpcXJx6lGPdtCfEbbBIz9rVc8FtfazWuFEBBDyktz75RobG5MvlJSUtLS0yBGzSkpKDAajoqIiLS1NW1ubPSekS5cu8fHxLBYrPT2dvTZ3586dyUSYlJSUnJzMng5RU1PTrVu3VrguhBCqL/1r1tF3IQddd0iLt4OBZqKeCCUpkpKCe4TLuWg1zwWyS0tL6XQ6Odi1oKBAQ0ODIAhVVdXi4mJ9fX0AYK/zqa6u3rNnz9DQ0NaKHSGEeKtl0La/2jev2zRjJR7b1LRBuDFv22VmZmZoaPjHH38AQHp6+sWLF4cPHw4AXl5e+/fvZzKZFRUVwcHBZGUPD48PHz7cuHGDfJuampqTkyOoyBFCouxAxBFDJf3BJoMEHUhTYSIUGEVFRS0tLfK1lJQU5w5/JiYmYmJiFArl0qVLFy5c0NfX79Onz4YNG/r37w8A/v7+BQUFurq63bt39/LyImfTa2pq3r5929/fX19fX09Pb9y4ceRgGXV1dRkZGQFcHkJIJIWmv/hYlLiqZzP35BEIgtXwdkhtWUJCwujRo+Pj439clcPUqVMHDRo0ZcoUPkXFJzQarf4MWSqVWn9bXbIyhUKpv7+SwJWWlpqamrJXVGgvRGRCfUVFhdBPNheFa+TTyjI3r107tnNnQUGBpqbmrLVrR40d21DNtK+Zyx5tDHTdaaSk37IxcGrxn1LUnxG2Czz/s+aZBRuqjBBCzbN8xoyv168Hl5XpAWRnZfnOnv301q3fz56tX5NKp/qG7Z7fbTpfsyA/4K1RhBBCvMXFxSXfvn2qrEwPAAB0AY5//Zp5/35MTEz9ygfeHrVUN/cwGdjKQf46TIQIIYR4e/rw4ejiYq7CscXFT+7d4yr859OjpJJPy7rPhXYIEyFCCCHeaFSqdL1xJNIsVm1NDWfJ57KM4HdntvZb0y5mDdaHiRAhhBBv3Xr3flpvj+4nysrdHR3Zb2voVJ+w3QvtZxi2t0eDbJgIEUII8da/f/8sM7PjEhJkr5AFcFpCIsXEhHOlzIB/g7ppd3EzHiCoIH8dJkKEEEK8EQRx5cmT1Jkzu2pqumtpddPU/Dht2rVnz9grYV1Nup32NWNBtxmCjfMXidb0CXl5+QULFixbtkzQgYgiFosl9LO4EBI+8vLyu48c2X3kSElJiaqqKudHicUpZ+MuB7nvact7DTaFaCXCQ4cO+fn5tc65Kisr5eXlW+dcgvKz10iuKo4Qao+4smB5bYVP2O5VDgt15LUFFVJLEa1ESKFQVOo9+OUTcXFxoe8AicI1IoTqY7JYfq/3DzR07KfnIOhYWgA+I0QIIfRzzsT9VUuvnWXnLehAWoZo9QgRQgj9oqi897dTHhwbvJ9CtLk1jZsHe4QIIYSaqqC6aMfr/Vv6rVaXUf1x7XYCe4QIIYT+r6ioKDY2Vl5e3trauv7oNjqTse3l3vGWI201OwskPD7BRIgQQgjodPqmJUueX7niSKdXUSjh4uIrtm/3njWLs87h6BPK0srjLIcLKkg+wUSIEEIIfFaskAkJeV1dTU6VrwIYv2aNpp6em4cHWeFR+rOInHfBg/cTQAgwTn7AZ4QIISTqGAzGP5cubf4vCwKAHMCh0tLffXzIt5/LMn6PPOHruEZOQghnA2MiRAghUVdUVKRHEFz5wAQgLzcXAKrranzCdi/sNqOjiolAwuM3TIQIISTqFBQUiuttt1QJICUtzQKWf/jBHh26urfDHXebCBMhQgiJOllZWXUTkzfEdw//jsjIDJ806Vzc5aKakvndpgsqtlaAiRAhhBD88ddfiw0N98jIvAN4BbBQWfmlvb3jjCE3ku9ud1wnISbMIyuF+doQQgg1kaGh4cvExD+Dg4NCQ2Xl5T3GjOnp2mf+g9Vb+q1Wl1UTdHT8hYkQIYQQAICUlNTcxYvnLl4MADQGbdGjdb9ZjbHTtBZ0XHyHt0YRQghxO/D2qL6C7hgLL0EH0howESKEEPrO9eR/kopTVzssEnQgrQRvjSKEEPrmY1Himbi/D7vtlhaXEnQsrQR7hAghhP6vpKbUN2zPul5LhGDf+abDRIgQQggAoI5J3xK2a1hHDwcde0HH0qowESKEEAIACHx7TElK0dt6rKADaW34jBAhhBDc//zkfcHHox77hG9ziR/CHiFCCImi6urq7Oxs8nV8UVJQ9Ck/p/VCubnED2GPECGEREt8fPyKKVOqs7JUCCKNxZq4bF60Rdb63ssMlfQFHZpgYCJECCER8uXLF++BA0Py820AAKCaIjaO9kwlwaD3yO4Cjkxw+Hhr9I8//jA2NhYXFzc3N09OTgaAwMBAUw4dO3akUqlcR/Xr149dYfbs2fwLDyGERNDvO3ZsKiiw+e9t0FTrrqXViYEPysvLBRmWQPGrR3j8+PGDBw9evnzZzs4uJSVFVVUVAKZMmeLl9f8FewICAlJTU6WlpbkOzMzMPHLkiKWlJQDIyori3WqEEOKf2H//XfXf1oM3XYziOqke8X1ZIq+cmJjYs2dPwcYmKPxKhDt27Dhw4ED37t0BgMxqAKCioqKiogIALBbrwYMHO3fu5Hmsnp6eiYlw7oOMEEKCJS0jUwWgAfDBXPXPkZ3+2PZKhkqvVCDqd0tEB19ujZaVlWVkZOTk5NjZ2XXu3Hnnzp1MJpOzQmhoaGlp6fDhw3kePnLkSCMjozFjxqSkpPAjPIQQElluY8dekJXNV5fZsqT7+mMxuvlVpQCxEhKdO3cWdGgCw5ceYW5uLgDcvHnz4cOHJSUlnp6eGhoanA/8Tp065e3tLSXFYyG7oKAgW1vburq6PXv2uLm5xcXFycnJ1a/29evXpKQkgmM/5b17986dO5cPV9NMlZWVgg6B70ThGmk0GovFotFogg6Ev0ThpxSFa6ytrSUIQlJSspE64yZPHnsuJHyU8uhbqV1jC14ArFFT2xgQUF1d3Wpx/qKf+imlpaUlJCQar0Ow/rtZ3IIKCws1NTUfPXrk4uICAP7+/uHh4bdu3SI/LSsr09HRef36tZ2dXSONMBgMbW3ty5cv9+/fv/6nCQkJo0ePjo+Pb/HgW0pFRYWCgoKgo+AvUbhGMhHy/EebMBGFn1IUrrEpiZAFrG1hez8npxYGRZV9/Wpta7vK379Tp06tFuSva/Gfki89QnV1dQ0NDTGx/993FRMT40y3586d69y5c+NZEAAIgiAIvuRphBASWefjruRVF56Ydlhi5g/6SaKDL88ICYKYM2fOvn37vn79mpaWduLECc7HgadOnZoxYwZn/X379p0+fRoAPn36dOfOnfz8/Ozs7GXLlklLS/fo0YMfESKEkAh6+eXfmyn3/Jw2SFAwC37Dr1GjmzdvXrFihYWFhYKCwqxZs9iZLz09XVxcfOLEiZyVS0pKxMXFAYBOp+/evTslJUVCQqJHjx4PHjyQl5fnU4QIISRSMr5m7fv3sH//TWoyKoKOpW1pr/ce8RlhWyAK14jPCIWGKFxjI88Iy2sr5j1YNaPLby5Gzq0fWMtqH88IEUIItQVUKjUwMPDffyPr3CkDOjsJQRbkB9x9AiGEhNPt27dVFE191ifFKetmfhJbP8B/3aoNgg6qLcJEiBBCQohKpY4ZNYda90TNZbSiOePj7ydp9I8B+/9+8eKFoENrczARIoSQEAoODhZjDFKxphoM//tjwCYGVQZAkcHa6rtxh6BDa3MwESKEkBBKTEwU1zazWLAv8fAqaqEWWcgC84z0AsEG1gZhIkQIoXYvPz9/yZQp/a2snC0tV8yYUVRUpN/RwGrl+/TL3mUJ7D2XgIDPunpqAoyzbcJRowgh1L4lJiZOHDBga2HhPgYDAG5nZLg+etjjj7HFl77kPjXnqFgjLuazedshQcXZZmGPECGE2pOXYWHLpkyZMGCAz4oV2dnZALBu1qxTeXnDGAxJAEmA0QyGq4tqemKyr+dSSUofCVgNcIMCAeJiljOmDXR1dRX0FbQ52CNECKF2Y+WsWRk3biwtLtYBePf8+Yhz53yPH89ISenKUeequ3GhuWrRkffe6f8MGzZs27Ztka+DzCwNV62+b2FhIbDQ2zBMhAgh1D48ffo0+9q1K6Wl5FtTFsulsLD/3LkUjgXC3thpXhhqdnjbqyFiCgCgqKi4b98+wYTbfuCtUYQQah9uhYTM+S8LkpQBBtFoIC2dBwAA6boKu2bbbTsUSSusVtHUFEiQ7REmQoQQah++Fher1ytUq60dMnmyt6pqvJLUmtUOCy98VEgpnaKqujkwUAAhtk+YCBFCqH0wt7ePplC4CqPl5CZMmrTqr/Pz1jvmvS32S6mbbGGx9coV5wEDBBJke4TPCBFCqO3Kz89XUVEhN5SYNn++x9Gjjvn5pv99eoVCqTE1tbSyvFJ6d2Bf18WzZ1LEKMrKygIMuD3CRIgQQm0Og8EI9Pf/8/ff9QmihMXS6tgxICTE1NT05D//TP3tN52yMj06/R2FYuDgcO7MmZPvzxdUFR4Y5MekMwmCEHTs7Q8mQoQQanPWzJ0r9ddfkVVV5NaC/xYUjHF0fBQb283e/kVCwufPn3NyctZZWGhqat77HPokI+yI+14JikQtvVbAcbdP+IwQIYTaluLi4te3bu38LwsCgAPA8oKCI/v2AYCYmJiZmZmTk5Ompub7go/BMWd29d+iJKUowIDbO0yECCHUtnz8+LE3g8FV2J/BeBcWxlmSWf7FJ2z35j4rDRR1WzE6IYSJECGE2hYpKanqeo/6qgCkZWTYb7/Wlq9/5je/67Ru2l1aNzohhIkQIYTaFjs7u3Bx8arvC/+Sk3MdN458TWPQNjz3czFydjcZ2PrhCR9MhAghJEiFhYWLvb0djIy66+tP9vRMSUmRkpLasGePp5raWwAGQBHANnn5cAuLyTNmAACTxdrx+oCOvPa0LhMEHbuQwFGjCCEkMJmZmSN69/bJzz/IYFAAXn/58tvbt4HXr4+fMsWqa9e9a9cmJyYqKSqOnDbt3uLFFAoFAI6+O11KLQsYuI0AnCnRMjARIoSQwGxbtmxPbq7Lf6tm9wG4WlTkPXv2i4QEGxubM3fvctW/nfrgTU7UYbfdEhSJVg9WaOGtUYQQEph3ERGDOPaOAAADAEZJSU1NTf3K4dmRp2Iv+DtvUpCUb60ARQImQoQQEhwWq/79TXEARr3pE0klqbvCA3c4bdBV6NA6oYkOTIQIISQwpubmUd+XlADUyMjIy3/X58utzN/wfMfa3kus1M1bMzwRgYkQIYQEZnNg4HwNjQ//vc0GmKCisvH7rXTLayvWPPWd3HlsH90erR+hKMBEiBBCraG2tnbX5s3d9fW7a2n1NDI6HBBAp9NtbGxOhoau69Gjp5ZWHy2t3yws1v799/AxY74dxaBteO7nqN97RCdPAQYv3HDUKEII8R2LxRrVv//A9+/Da2okAGoA/Hx8Zr148efNmzY2Nv9ERDAYDAaDQW63xMZksfxeBWjKqs+2myyoyEUB9ggRQojvHj16pJ+YuLKmhpz0IAOwo6rq6+vX79+/JytQKBSuLAgAf0SdKKdVru+9DKcM8lWTEmFCQsL58+cTEhL4HQ1CCAmlN48fDy4r4yr0LCkJf/WqoUMuxF+Nzo/d4bQBpwzyG+9E6OHhsWHDBvL1P//806VLF29vbxsbm7Nnz7ZibAghJDxYTShhe5T+7EbyvX0DfOUl5fgYEwIAnomwrq7uyZMnLi4u5NvNmzfb29t//Phx8eLFa9euraura90IEUKo3evr7v6PigpX4R1V1X5OTvUrR+bGHI46tXvAFnVZtVaJTtTxSITFxcV1dXVGRkYAkJubGxMTs2rVKisrqw0bNuTm5mZmZrZ2jAgh1M4NGjSo0Np6h6wsuYV8FcAqBQWt/v2tra25an4qS98RfmC70zpjJYPWj1M08UiEMjIyAFBVVQUAd+7cIQhiwIABAKCgoAAAZfVucyOEEPqhy6GhMhs2OBka9tDScjExsfD3P3bpElednMq8NU+3Lu8xz0bDSiBBiiYe0yeUlJSMjY0PHTq0YcOG4ODgnj17qqmpAcDnz58BQEtLq7VjRAih9k9CQmLFxo0rNm5sqMLX2vI1T7dOshrjpN+7NQNDvOcR7tmzZ9KkSSdOnJCUlLx16xZZePPmTW1tbV1d3VYMDyGERAKVXrvu2fZBhk6jzIcIOhaRw3vU6JgxY5KTk2/fvp2UlOTu7k4WWltbnzx5kiBwOgtCCDXm6ZMnA62tu2trd9fVnTlyZG5ubuP165j0TS92migbTu8ysXUiRJwaXFnG0NDQ0NCQs8TLy+unmv7zzz8vXrxYVVXVrVu3Q4cOAcA///wTEhLCrhAYGNihA/cy6snJyT4+Punp6Y6Ojr6+vrKysj91UoQQEqwLp0+fXbkypLRUHwAA7t+65RkRcS8qSltbm2d9FrD2/vuHJEViRc/5rRknYmswEdLp9A8fPmRlZdXW1nKWjx07tintbt++/cKFCzt37tTW1o6OjiYLk5OTCwoKFi5cSL4lR99wotForq6u06dPX7169YYNG5YuXXr8+PGfuBqEEBIoJpO5Z+PGV6Wl7Nl/HkxmdX7+vs2b9zXw1+xw1Mn8qsK9A3woBKXV4kSceCfCly9fTps27dOnT/U/YrEamQP6f4WFhTt37oyKirKysgKA3r2/Pfg1MjJqJJXeunVLVlbW19cXAA4fPmxtbb13715lZeUfnhEhhNqCzMxMUyaTaw68J4Ox//lznvVDPlyKynv/u+suSQr3+mqo1fBOhFOnTqVQKFeuXLGyspKSkvrZRqOiovT19ZOSkvz8/FRUVJYuXdqpUyfyozdv3owYMUJHR2fmzJn29vZcB8bExDg4OJCvTU1NFRQUEhMTe/Xq9bMBIISQoNTvLbAa6ELcTn1w/3PoYbfduHyMYPFIhKWlpZ8/f37w4IGbm1vzGs3MzMzNzQ0JCVmyZMmrV68cHBwSEhK0tbWtra1XrlzZoUOHf//9t1+/fg8fPnR0dOQ8sKCggLP/p6Kikp+fz/MUX79+TUtL69q1K7tkzpw53t7ezQuYHyorKwUdAt+JwjXSaDQWi0Wj0QQdCH+Jwk/ZOteooqLySUysAoDzwc8/FEpPR8eKigrOmq9z357+cGF3vy0SdHGuj5qttraWIIj6i3cLmZ/6KaWlpSUkfrBYK49EKCkpKS4urqio+HOhcVBQUKiqqjp9+rSKisrAgQPv379/7dq1BQsWuLq6khWGDh1aUVERFBTElQgVFBQ4r7CqqqqhMJSUlHR0dE6cOMEuMTc359rTWeDqPwQVPkJ/jWQibMZ9kXZH6H9KaK1r3Lh376glS46XlhoBAMBtCmWntvb9Xbs4zx6V9/7Ih9P7Bm41UzFpwVNLSkqKQiKElv4peSRCOTm58ePHX7hwodn3JI2MjCQkJJSUlMi3Ghoa9dejMTAwSExM5Co0NDS8efMm+bqioqKgoIBc6Y0nKSmp+jdXEUJIsMZ5e3cwMJizZElpfj6LQunRt+/933/X1NRkV0gsTtn+at9Wx3UtmwVRs/F+RjhkyJDly5dnZ2e7u7urfL9QbFNGjfbq1cvQ0PDatWtjxozJzs5+8eLFihUrAOD9+/ddunQhCCInJ+fkyZOTJk0i6wcGBnp6enbs2HHs2LHr16//8OGDjY3N8ePH7e3tjY2Nf/kaEUKoVTk6OT2MieH5UVZ59sYXO9f2Wmqr2bmVo0INYvHSyDpqPOvXFxYWpq+v36VLFzU1te3bt5OFgwcPVlZWNjU1lZGRmTlzZm1tLft0N2/eJF8fOXJERUXFwsLCyMgoOjq6ofbj4+MtLS2bGIxAlJeXCzoEvhOFa6ytraVSqYKOgu9E4afkxzUWFRUtmjTJXk+ve4cO7t26hb140Xj9/KrCsddn3v30uMUjIVGpVPbfVSHW4j8lweI1likjI4PBYPBMhCYmTe3LMxiMrKwsHR0dzhvWJSUl5eXlXIVcqqqqCgsL9fX1KZQGZ9UkJCSMHj06Pj6+icG0voqKCqF/6CIK1ygizwhF4ads8WssKipy79ZtU07OSAYDANIA5qiqzjpwYPyUKTzrl1LLFj1cN9rci3+LqInIYJkW/yl53xrlWlOmeSgUSv0nfKqqqqqqqo0fKCcnJyeHg4kRQm3afl/f1f9lQQAwBrheUtJv3bqx3t5iYtyrV1bSqlY98XEz7o9LibZBDa4sAwCJiYkxMTFfvnzp0KGDtbW1ra1tq4WFEEJt3KvQ0PXf3zmTB+jEYKSlpZmamnKWU+m165/7ddHsPNVmQuvGiJqEdyKsqamZPn36pe/3ynJ1db106ZJKvU2WEUJIBLFYrPq7FhAATCaTs6SOSd8c5q8jr7Wk++xWiw39FN67T6xcufLq1atr16599+5dXl7ehw8fduzYER4ePn369FaODyGE2qZe/fvf+34cQzVAkpgY50AKJovp9ypAmiK1ptdiAnDrnjaKR4+QRqOFhIT4+/uvWrWKLNHS0rK2tjY2Np40aVJBQQHnhBiEEBJNK7du9bh9WyEvz53JBIBsgLkqKiu3bWOP8iO3laisq9rlvBkX1G7LePQIi4qKqqurPTw8uMo9PDxYLFZGRkarBIYQQm2alpbW3cjIS15e3Tt06KGl5W1ltfSvvybP/v/9TxawDkQczanI2+m8SYLygyW+kGDx6BEqKyuLi4t/+PDB2tqas/zDhw8AoKGh0UqhIYRQ29ahQ4dTN27w/OjYu5CU0k8BA7dL4bYSbR6PHqGsrOzgwYMXL158/fp19lPf0NDQadOm2dvbN7LmGUIICavU1NR18+ePdXJaOWPGu3fvGq98KvZCRE707gE+shIyrRMe+hW8B8scOXJES0tr1KhRsrKyRkZGsrKyLi4udDr97NmzrRwfQggJXMixY9N793Y8enRPWJjn6dPrXF13b97cUOXLibeeZITtG7hVUVLI1ygQGrynT+jq6kZHR1++fPnFixdlZWUKCgq9e/eeMGFCW9veASGE+K2goODw5s0vioqkAQDAGGBAcbH7kSNDJ0zo3Jl7vdDryf9cT/7nkKu/qgzONGs3GpxQLyUl5e3t3aZ2+EMIodb3+PHjMRUV0hwlYgAzS0ruXL7MlQjvfnp8Mf76Ided6jI/WD8LtSm8b40ihBAifS0tVaut5SpUY7HKvt82/GnGy5Pvz+0b6KsthxPM2plvifDy5csGBgZBQUEAYG9vb9AAwYWKEEICYG5pGa2szFUYJS1t0aMH++3zzNe/Rx0PGLTdQFGvdaNDLeDbrVF9fX0vLy8zMzMAcHNzKy8vF1xUCCHUVjg7O2/R0gotKxv031497wD+VlcPGz+efBuW9WZ/xJF9g7YaKekLLkzUfN8SYa9evdhb0vv7+wsoHoQQalsoFMrlJ08WTZy4JyGhM53+WVy8Skfn0t9/k5vkRORGB0QE7Rng0xG3m2+3Gtt9AiGERFBsbGzEmzdS0tJ9+/UjFw7t0KHD1WfPcnJyPn36pK+vz55O/Tb33c7XB/z7bzZXMxNkxOjXfEuEnz9/Dg8P/+EBkyZN4mc8CCEkMFQqddbo0VUREe5lZVViYjOVlBxGj/YPCiIIAgB0dHR0dHTYlaPy3m9/FbDdab2lWifBhYxawLdE+Pz58xkzZvzwAEyECCFhtWHhwj6hoQv+GyO6pLBw2fnzwRYWc5cu5aoZW/Bx+6t925zW2WpyTyVE7c63RDh+/HhXV1cBhoIQQgLEYrFC79wJ4JgpQQBsq6gYGhTElQg/FMZvCdvl22+NnaZ1vWZQ+/MtEcrKysrKygowFIQQEqCqqipV8h4oByWAmooKzpIPhQmbX/j79Ftjp2XTmuEh/sHBMgghBAAgJydX+t8ECbZKAEmOHsKHwvjNL/y39F3dFbOgEPmWCG/cuLFp06YfHhAXF8fPeBBCSDAIgugzaNDZK1cm19WxC3fJy4+fNYt8HVvwcUvYrs19V3XT7iKgGBFffEuEampqXbt2FWAoCCEkWHuCg3/LzAxNSPAsKakliMtqajoDB25dvRr+ey64ue8qe21bQYeJWti3ROjo6Ojo6CjAUBBCqDUxmcyXL1+mpqYOGjTI0NAQAOTl5W+9fBkWFvbm2TMpGZntrq62trbw/zuimAWFFj4jRAiJotOnTi+Yt4nFMCNAhwG7jA3kwv59oKmpCfV6BbEFH7eE7d6Cd0SF17dEmJWVFRMTY2lpaWZm9vDhw9p6q62TvLy8Wis2hBDiizdv3syZvZXOfA1gSJZ8Sg+y6+yYU5jEVTM6L3bbq72+jmtxpoQQ+5YIHz9+PGPGjJ07d65fv37y5MkFBQU8D2DVG1WFEELty+K5qxnMfewsCAAMWFBccuLt27c9OPaUeJv7bvurgK2YBYXdt0Q4atQoBwcHLS0tAAgLC6PT6YKLCiGE+Cg9PZ8FPbgKxVi9nj59yk6E/+ZE+YcH+vff1FndotUDRK3qWyJUUlJSUlIiMURTRAAAIABJREFUX3fqhEvnIYSElrS0JJSXcPYIAQCIfC0tB/JleHbk7jeHdjpvslLHP4bCD3eoRwiJnPGTBksSAd+XFTKI8PHjxwPAs8xXu98E+vfHLCgqeCfC6upqf3//3r176+joqH6vleNDCKEWt2ffbm2taEliJMBbgCwC/hYX67F9+zJpaenH6c8PRQbvG7gN95QQHbynT0yfPv3KlSuDBg0aM2YMLkCKEBIyYmJiGbnx27f6nQ6e/bWiysxM59ipG3Z2dg/Tnh2LCdk3cJuJsuGPW0HCgkcirKqqunr1amBg4KJFi1o/IIQQah2bfTZt9vm2ruTNlHvnP14NdNmhp6DTyFFI+PBIhHV1dQwGo0+fPq0fDUII8UlxcbGMjIy4OO/bYBfjr91IvnvQxU9HXruVA0MCx+MZobKyct++fZ89e9bqwSCEUAurq6vbvWWLrbb2PAeHPrq6E93ds7Ozuer8+eHi3U+PD7vtxiwomnj/4+jMmTOjR4+uqalxdXVVV1fn/MjExKRVAkMIoRawyNtb786dyOpqCQAAePLo0bDevZ99/KigoAAALGAdjf7zbe67Q67+KtJKgg0VCUqDa43Ky8tv2rSp/sZMuLIMQqi9yMrKSnn69Fh1NbtkIIs1LT//9NGjS1avZgHr98gTcUUJB112KEopCDBOJFi8E+GoUaNycnK2bdtmamoqISHRyjEhhFCLeP/+vROVylU4gEYLePaMuWrl7jeH8ioLDgzyk5PAsfEijUciLCwsfP/+/fXr10eMGPErTefl5Z05cyYrK8vY2HjGjBnKysplZWV37tyJiYmRkZEZMmRIr1696h8VFBRUUVFBvjY1NR0zZsyvxIAQEmVSUlLVFApXYTWAhKy0T9juOmbdnoG+UhRJgcSG2g4eg2VkZWUpFEqHDh1+pd2kpCRbW9ukpCRzc/OMjAzy6bS/v//ly5e1tbXFxMTc3d3Pnz9f/8Bdu3YlJSWVlpaWlpZWVlb+SgwIIRHn4ODwWEKC9n3hRXXl6pFqEmLifk4bMQsi4NkjlJOTmzBhwrlz5xwcHJrd7tKlS2fPnu3n58dZuG3bNikpKfK1goLCsWPHJk2axPNYcjNMhBD6FYqKivM2bvTatm1fSYk1QDHAXm2V92t6eZjYrHJYKEbgGpMIoKFnhI6Ojhs3bkxJSXFzc5OXl+f8aM6cOT9stK6u7vHjx1u3bj127FhdXd2wYcMMDAwAgJ0FAaC6ulpRUZHn4RcvXrx//3737t0HDRr0E5eCEEL1zFm61K53b7916z6lpKgaaMrOtRhu6bykx2wCCEGHhtoKgucoUG1t7fz8fJ4HNGXU6KdPn8zMzLp16zZ8+PDi4uKzZ88+f/7cxsaGs0L37t1v3brFuQ00afz48WZmZnV1defPn/f09Dx+/DjPU0RGRrq6uo4aNYpdMmzYMFdX1x/G1moqKyu5/g0hfEThGmk0GovF4vw3nFAShZ/yc2H6jpiDHkYDx3YcJuhY+KW2tpYgCElJIb/f+1P/uUpKSja0igIb74+TkpKYTObPhcaBQqEAwMKFC2fMmAEANBpt//79p0+fJj/Nz88fOnToxo0b62dBALh06RL5YtGiRR07dly2bFnnzp3rV5OSkpKVleXcQtPc3LxN/bWi0WhtKh5+EIVrJAhCFBKh0PyUsbGxr1+8YNDpvRwd7e3t2eXp5Vk+kXum2owfYuomwPBagSgkwp/6z1VM7Mc3wL9LhE+fPnVwcJCVlWVvTNg8HTp0EBMTs7S0JN9aWlrevHmTfF1QUDBgwIApU6asWrWq8UYMDAx0dHTS09N5JkJxcXElJaV58+b9Spx8RaFQKPWGqwkZEblGFoslCpfZ3q+RTqfPGz++6MWLYSUlYgD7VFXF7e1P3bghLS0dW/BxS9juudZTBndyEXSY/EWhUAiCaO8/5Q+1+H+u36XKmTNnamhojBgx4vTp04WFhc1uVEpKasiQIeHh4eTb169fW1tbA0BRUZGLi8v48ePXr1/PWT82NjY5ORkAqFQquycaFRWVnZ1tZWXV7DAQQqJjr6+v8f37N4qKZjCZ05jMv4uKej975rtixevsiM0vdm3os6yfTvNH/yHh9l2PMCoq6vHjx7dv316+fPmsWbO6du06dOjQ8ePHs/t2Tbd9+3Z3d/eoqKiSkpLPnz8/f/4cAHx8fBISEm7fvn379m0A0NbWvnPnDgD4+fnp6ent37//zZs306ZNs7e3p9PpT58+3b59u7GxcQtdKUJImF07e/YlxwoyALCwtrZX5ovEN5X+/TdZqZuzJygjxIX3YBk6nf7mzZvLly9fu3bty5cvJiYmQ4cOHTt2bJ8+fZpyv5VUWlr6/PlzBQWFvn37SktLA0BGRkZRURG7gqSkJDmCJi0tTUJCQk9Pj8lkxsfHp6SkSEhI2NnZ6enpNdR4QkLC6NGj4+Pjf+5yW1FFRQW5mKEQE4VrFJHBMkLwU3bX1o78fojfFXeTQ0PMzngfN1IxAKG4xh8SkcEyLf5T8k6EbCwWKzIy8saNG7du3YqLi+vQoYOXl9eCBQsEPs8PE2FbIArXiImwvehhaBiWmSkNAABMggiaZBVlpR7zZ9q7pAyyghBc4w9hImyeH3TvCILo0aPHjh07Pnz4kJaW5uvrm5OTc+vWrRaMACGEft3YadN2ycoCQJ24mN+CrimGShZ7ozzdhws6LtQO/KBHyBOTyWz6DVI+wR5hWyAK14g9wvaCwWAsmjQp4+UzJW8TcRqj8q90hW49Tly7xu4eCcE1/hD2CJvnB9MMeRJ4FkQIIQCorq6Wlf3/xhEUCsXv9JGl99bLfJXoVmXe556jwJ/goPaiOYkQIYQEqLS0dPPixa8fP5ZnsSoolIlz5izfuLGAWrT6qa+rWf/pXSYKOkDUzmAiRAi1JzQabUivXss+f/6DTgcAGsDuvXunfHlH9VSe33W6m3F/QQeI2h+8yYkQak/+vnjRLTt7HJ1OvpUEcO6slNujbrLeaMyCqHkwESKE2pOoJ08GVlWx315xNzk02bp/wNuaFJwvj5oJb40ihNoTCSkpcqNdphjxu3fnd1bqh7e+PF0NEhISAo4MtVvYI0QItSfOw4ZdU1amSlK2LO2eoSN/eOtLjeKaO/Ly/fr1E3RoqL3CRIgQak88hwzJdrAds6WfVFXdnr0RpTX035SVPaZP19HREXRoqL3CW6MIofYkvTxLZn5H9QK50PMPb3XQUdfUXLp9u4enp6DjQu0YJkKEULsRlfd++6t9C+1nuhr1h9mCjgYJC0yECKE2LT09PS4uTlVVNU+55Gzi5e1O6200cJtS1JIwESKE2qiKioqFEyfmR0T0qq2NH9Mxr4vazA7jMQuiFoeDZRBCbdTcsWPdHz68WV5Cn2mupSt9fsuzUwvWREdHCzouJGwwESKE2qKioqKcd+/c5SlLNvVVrKQd8A83KKftLC4O9vcXdGhI2OCtUYRQW5SWlmakLzt3mu24e5/H3/1EFtoApCYmCjYwJHwwESKE2qJUVkbGbMsdwdF9ovPZhbkAaurqAowKCSVMhAihtoUFrIvx127k3Ku7mK3GkQUB4KCS0ti5cwUVGBJWmAgRQm1IDZ264/WBMmrZMY+AbLMvvw0e7F1Y2K+2thjguJpaBw+P0ePHCzpGJGwwESKE2orC6qKNz3eaqRj79FstISauYq0clpR05uTJ02Fhqlpaq//X3n0HNHG+DwB/k5CQBAgQZthTRAUEF6ACLlTQ1oHaujcu1Fr36Lb+xF1xK466cYvKUBkqQ0DEASiCRIYECAFCEjLv98fVfFOwtrXECHk+f+Xee+/ueXMHT26976RJvr6+mo4RdECQCAEAn4W86uc/3o+c2CUsrPNIZSGdTp8XEYEiIjQYGOjw4PUJAIDmXXh+bfmtDXVHnm8LWRI+blxpaammIwJaBM4IAQCaJFXINt/fFZ8dP2ZH1pzyel2EUktLw1JSfrt0yR9GVgKfBCRCAIDG1Isbvr8Xyc5/OeeHe1P5zXjhIAy7XFPz1cyZD16+1Gx4QEvApVEAgGbk176cc/MbHwvPt7tyvnqXBXG2CNEaGurq6jQVG9AqkAgBABoQX3J3bcrPi3vOmeYxQS6VkVtVoBEIYrFYA5EB7QOXRgEAn5RULt2ZfeBJ9fNdg3+1N7RFCLl365ZZVqb6YoQIoTIi0cLCQlNBAq0CZ4QAgE+nRli7+PaaJong4PAdeBZECK3esmWJmdmLd3XqEZphaLhozRoiEf5BgU8BzggBAJ9ILufpLw+2hXX+4qsuowmIoCzv2rXrvri4hTNmNFdV0QkEHoXy7caNX02ZosFQgVaBRAgAUDsMYRcLY0/nX1jr9w079cXwyT1qa2pMzczmrFqFd5nm4+NzOy9PJBKJRCImk6npeIF2gUQIAFAvoVS0OeO3twLOvqFbNs5f3nzt2tGGBhZCb8vLvwsPT46N3f3773hNGo1Go9E0Gy3QQnAJHgCgRiX17Dm3vmHSjPcER3KKq17funWwoYGFEEKIhdChhgZ2XFxeXp6GowTaDRIhAEBdbpXc+eb2+pmeE5f0nEsm6iQlJIzlclvUCeNyk+LjNRIeADi4NAoAaHsSuWR/7vGst7k7B//iaGSPF0qbm6kY1qImFcPEQuEnDxCA/4EzQgBAGytrrJgXt5wv4R8avl2ZBRFCPv7+ScbGLSrfNTbu2b//pw0QgD+BRAgAaEt32fciElePcQtd57+MqkNVnTVgwIBSZ+fDZDJ+VoghdJhMfu3sPHDgQI2ECgBOjZdGGxsb796929TU5OXl5eHhgRcKBIL4+HiZTBYcHGxkZNR6KQzDUlNT2Wy2r69vp06d1BceAKBtieWS3dmHHlc/2zrwRxdjp9YVCATCxaSkn1es8L50yZxAqEFoyKhRF7duJRAIrSsD8MkQsFaX7NtETk5OaGiop6cni8V6/Pgx/lQYl8vF0xudTk9LS0tPT7ezs2ux4IwZMzIzM/v163flypWoqKjx48e/d/0FBQVjx47Nz89XR/Btgs/nGxgYaDoK9dKGNkokEgzDdHV1NR2Iev33XfmmseLH+5HWBqyVfSL0KXp/W5/H4xm3ukyqVtpwuIrFYgKBQKFQNB2IerX5rlTLGaFcLv/666+///77+fPnq5bv37/fzc0tNjYWITRz5szt27fv3LlTtcKzZ88uX75cUlLCZDJDQ0OXLVsWFhYG3SwB8JmLL7m751H01G4TVAeXz83N/X7Bgso3bxCR2Ktv3x927VLtO/QTZ0EAPkAtOSYrK6uurm7y5Mn37t17+vSpsjw2Nnbs2LH457CwsOvXr7dY8Pr16wMGDMD7lQgJCamqqvqcz/kAAEKpaGPajtP5F3cN+VU1C8bFxi4eMmRzRkZ2ZWV2eXnohQvDfHwqKio0GCoAf0UtZ4TFxcUGBgaBgYHOzs6PHz/28vI6f/48kUgsLy+3trbG69jY2FRUVGAYpnp7oKKiQlmBTCabm5uXl5d369at9SakUimPx9u3b5+yxN/fv0uXLupozseRSqVSqVTTUaiXlrQRw7AOf1ni43bly7rijRk7vMy7Rg3aTNXRVV3D+oUL47hc03eTI+Rywtu3G1es2HX8eBuF/K9pyeFKIBA6/D3Xf7UrSSTS3/79qiURikSi0tLSU6dO+fv7CwQCNze3a9eujRo1Si6Xk0gkZXAKhaJFIpTL5WTy/wYm09HRkclk792EVCoVi8U5OTn4JIFAcHJycnNzU0dzPo5cLpfL5ZqOQr20pI0YhmlDM/9VGzGEXSm6dabw0oLuM4Js++JrUM6tq6szbm42/fMiwzDshwcPNPhNasnhSiAQtKGZ/7yN/+RXrFoSoZWVla6urp+fH0JIT0+vd+/eT58+HTVqFIvFqq6uxutwOBxLS8sWIbJYLOW1UAzDqqurrays3rsJOp1uaWl5+PBhdcTfJqRSKZVK/ft67Zk2tJFIJGrDwzL/alfymus3pu1oljUfCtluoWfeugKZTCa1OinBpzV4wGjD4YqfDnb4h2XafFeq5YKPr68viUQqLy9HCGEY9urVKxsbG4RQUFBQYmIiXicxMTEwMBD/3NDQgJ/nBgYGpqSkSCQShFBGRoaurm7Xrl3VESEA4OOkVWTNvrm0i6nbriG/vjcLIoTMzMyqyeSGPxcmEQjevXp9gggB+LfUckbIZDIjIiJGjx49e/bsBw8eSCSSCRMmIIQWLVrUo0cPMzMzPT29vXv3pqSk4PVdXV0PHTr05ZdfBgYGurq6jh49Ojg4OCoqavny5R3+lzgA7QXea9r98szv+q3wMv/fL1ShULjtxx/jLl6UiMV2jo5rtm/v2bPnui1bxi1YcITHw8fevU8grDA3v7hli6aCB+AD1PVC/aZNm3r37p2Zmenv779v3z46nY4QcnR0zM7OPnXqlEwmS09PVz7bsnXr1u7du+Of4+LioqOjy8vLt2/fPnLkyL/cAADgE3pdz/75wTZbhvWRkJ0GFH1luUAgGOztPa2s7G5zsy5Cz8rLI4YOnbdjx4SpU03MzactXsyvrUUEgouHx8UDBxwdHTXYBAD+irpeqFc3eKH+c6ANbYQX6hUYdq7g8rmCyxE95w6yb9kp6Naff6Zu3LhILFaWNCHU18Iip7xcR+fz6tNfGw5XeKH+43xeRyoA4LPytonza/pOEoF4YNh2Cz2z1hVSrl/fr5IFEUL6CHkrFAUFBcqOFQH4zEEiBAC8X/KbB7uyD47r/MVX7mOIf/FqmlQqbX32QcawDv/GHuhIIBECAFriNTdszYziCGq2D/rZ0fB/HQKXl5cf3rnz1ZMn1o6OE8LDfXx8egYE3H769GuVl7pkCGUTCO7u7poIHICPAYkQAPAn+IlgiPPgH/qvIhP/9y/i8vnz/7do0fLa2q8wrAyhtRcv9p05c/G6dcMuXLB6+zYQwxBCDQgtZTAmLlhAo9E01wIA/h1IhACAPzRJBPtzj+VU5f3Yb6Wn+Z9e4W1sbPw5IiKlpgZ/RKEzQoO53BHR0SETJlxJT185a9byp0+pGCam0Zb88MOk6dM1ET4AHwkSIQAAIYQyK3O2ZO7xtepxNPS3FgPqIoRSUlJCRSLVB/UICIVzuVdPnvxpx46ziYkYhjU3N8OJIGiPIBECoO34kqbtufsLeUXf9f22xYmgUn19vWlzc4tCM4R4HA7+mUAgQBYE7VQH71MfAPBh6RXZM28sphDJ0aG/KbMgm83u7R1gQHNg0B37+w7mcDiurq6PGYwWy+aSyW49e37ykAFoY3BGCICW4kuaDuQez6nKW+f/jTPdgfbucmhKSsqQQV8r5BvlaBRCiozMc3bW3R9kXH/NYiXU1QW/64LjJUKHTEzuwO1A0P5BIgRAG90pTd3z6Eiw44BjI6J0SRQ+n6+cFfblLKn8MkJ98EkZWkCQu4wZOS3r8d2FX3214/lzT6n0DYVSzmQeO3MGH0YbgHYNEiEA2qVaWLv94V6OoGZj4Dp3k06tK9TzxcosiMNQcFV1g4WFxYWkpLKyspcvX9ra2rq4uHT48YqBloBECIC2wBAW+yrh4OMTI5yDfw5Yi78j2NjYmJqayi4t9erevW/fvnK5nIDI71v6jyG1bW1tbW1tP2HUAKgdJEIAtMLrhjdbM6OIBNKe4M12DBu88Mr58z8vWTJCIGAJBL8bGa2ztDwWG0skipGiDiHVa56VFHK77J0fgH8CEiEAHZxYLjnx7FxsUcJMr4lfuA4j/DFWPHr58uXmhQuTa2v/eDuwri67rm7y8OHz5k3Yu2esFLuEkDFCCKEaMmH06nXhGgofALWDRAhAR/aY83Tbw302BqzDITvM6Kaqs37fu3cVl6v6jnxPhFy43KkzJiOE9u7rSsTsEVJgxPKVK2ev37Du0wYOwKcDiRCAjonXXL8nJ/pZbcHSXuG+Vj2lUmlMTMyz9HQLB4dhI0Y4OTm9efHiq1bDkbqJRGw2e+fu7Tt3b8/NzSWTyd26ddNI/AB8MpAIAehoFJjiWlHcsadnhjsNPhYaRdXRLSwsnDp8+LCamj4CAYdInPbLL6MWLrS0ty9DqEVHMmwqdYClJf7Z29v70wcPwKcHiRCADuVlXfGOrH1kInnH4I34CEoYhs0YOfJ4aekfAyMpFNNrar7ctWv0li1bY2IG19Up/wuUIJSjp7e3d28NxQ6AZkAiBKCDaJTwDz8++aA8c57P9MEOgcqHYp4/f+7Y0KA6PCARodU83qmEhLFr1gRERs7gcm0Uihwa7Yqp6eGrV0kkkkbiB0BTIBEC0O4pMCz2VXz0k9MD7PudGLn39YuSA1F7xCJR7379/Pz8OByObavx4u0QeltWtvfcudDx429cvZpSUODVr9/9MWOo1JbjTgDQ4UEiBKB9e8F9tTP7AJmos23QT44Mu8VTp76Ojx9TV6ePYXuYzMiuXX/cvbuIQmmx1EuE7F1dEUJ2dnbzIyL4fL6BgcH7Vg9AxweJEID2iiviHXx8PKfqyXzv6QMd+hMQ4bfNmw2uXr3R1IRXmMzlHsvIOBgZ2cBi3aup6f/uGVERQj+ZmPy2bJnmYgfgMwKJEID2RyKXnC+8di7/siel83B+P91yImaHEYiEs4cOxb/LgrjpEsnOxMTYnJzpI0falZX14fGq6fQrenrLN23y8vLSVPwAfFYgEQLQzqRVPNydfdhQrle9KUtYekvQ1HSSwVjFZB66ckXy50HkcUyEGAzG7dzc9PT050+felpYRAQGGhkZaSB0AD5LkAgBaDeKeCVROUf4Yn64+9RvAsJucjgsfAaXW8jlTho2jEqnNyKkOn4uhhAXIfz+n5+fn5+fnyYCB+CzBqOoAPC5wzDswq2Lk/ZNj4hd2Y3a6XDIzsL43Fk8HkulTmeEBjc09Bgw4Ad9fdVlD+jqDgwNJRAInzhmANoROCME4LPGrmBP+2ESqYe+V8qbfjdKTlNTyiblyiSSARJJi5rujY1NXbuWfvXV4CtXxtbXUxSKOCaT5O19dM8ejUQOQHsBiRCAz5RMIb9RnLAzaY+HjnDD+kfmXBFCaF6TeMaxY6SQkHIiESkUqvXL6HR3a+tFS5a8XLHiXkqKVCxe4+/v4+OjofABaDcgEQLwuZBIJHu3bo2LiWkSChxDu0v6MczpptiB/N2PXivrEBDa0NCwsKjoIJP5VW0t7V05F6FLBgYpwcEIoU6dOnXq9J6h5wEA7wX3CAH4LDQ1NQ308pJv3LhGXNZ1koXEhFO6PaU3x922XNCipgNC9XV1EZs3B5qZHSYSkxGKIpOHWFhEHjvGYDDes2oAwAfBGSEAn4XfNm0KkddyFnrsZ+nPulA4ML2Sg2Ejyr6jt6r5CiFbG5uJM2cGDRt26dy5G8+fu/r43J04Ed6IAODjQCIEQANKSkqid+4syc+3dXaevGiRoT0zXp5mvNRnfFzJxh1ZZJkCIcRCyFosRi4u17nckXI5vqAcofVGRjOWL0cIWVlZLfrmG002A4AOARIhAJ/a74cOHVi3bmVt7VQMy32SHkF9QunBklUKTu64py+Rq9bUx7Bvdu78ftGimOLiIB6vnky+wGCELVoUMnKkpoIHoOOBRAjAJ1VdXb173brUmpoGE9rvX7qm9mJNTSz9/dJruy5eWRL5AJWaMoTyEfLy8rqZmZmenp6blcUyNY0JDLS2ttZY9AB0RJAIAVAjDoezec2anLQ0MpkcGBKy7LvvEhMTv8Caj09wjx1gNyLpzckVdxlNUl0C4clY95W5uadqavDHPYUILTMwmDhvHoVCQdApDADqBIkQAHV58uTJ9ODg72trf5HLJQjFFBUFxV1ynxdU9Yv/mOQ3J1ckGfL/eCneFMN0ZLIDcXHzpk3DqqsNCIQ3BMK8VavClyzRbBMA0AaQCAFoG2Kx+MmTJ9XV1V27dnVwcEAIfTt16mkOpzNCCCG+KU003NnE35pTVuFyMnfem2rVZXNpNLcePXx8fO4+fcrn85uamlgs1nu2AQBQA0iEALSBhJs314aH92xuthCLd1OpTB+fnSdONFZWdkbojZX+6REuad4Wo+6Unllxd7CRBZ9ulEqoCXg3OuAThM6bmNwbPx6fNDAwgDFyAfiU1JUIhwwZkp6ejt/ecHJyys7ORght3rx58+bNeAWJRCKXy3k8HpVKVV3Qzs6uoaGBRCIhhIYOHXrmzBk1RQhAW3nx4sV306bF19aa4NN8/oU7d2aNGUO10/9uov0TN+aYhNdnvr2rJ5QihAgMxfk7dxZMmBD56pW7VFpCJtdbWp45f15PT0+jjQBAe6nxjDA6Onr8ux+5uFWrVq1atQr/vHTpUg6H0yIL4lJTU2HIUPDZamxs/OGHH7LTnji4Wn+zbKm3t/ehrVu/V2ZBhBBCLq6GgoEkhUUnt+tFa/fnUsV/vBRRgJC1vb2Njc21Bw/evHlTUlJiZ2fn5OSkkYYAAHBqTIQymay+vv69vV1IJJLTp0+fOnXqvQuKxWI+nw9Xh8Bn6MKFC5O+WozJJ0lRxINM9pnTYyeEBQjKXuLPtCiIhNRerDOhzkKqjn3SW8uuIVcyMkLFcvzn3huE5pqYbN2+HV+VnZ2dnZ2dphoCAFBSYyKcP3++jo4OhULZunXrpEmTVGdduXKFSqUOHDjwvQuGhIRIJBJLS8t9+/YNGjTor9bf3Nyck5OjnHRycjI2Nm6r4AForbm5edLXERL5fYScEUIKhBSKeedjegX11K3QIeb7Wp380tWQL/n6RnFA1tvpJqZfbZpa6OU9cPVqC5lMipDY0HDjgQN9fH013Q4AwJ+oKxEeOHDA0dGRQCDExsaOGzfO09PTw8NDOTc6OnrWrFn4jcAWkpKSnJ2dMQyLiooKCwt79eqViYlJ62qNjY1VVVVz5szBJwkEwoIFCyZMmKCm5nwEgUDQ4UdD1YY2SiQSDMOkUilCKDo6mijvj2fBdygEo/Vcr91qK65AAAAgAElEQVRrZwb3K6xdc+Bxl1c8hBAboXwq1dHR0dnZOXTUqNraWgqFgveI3dTUpJmWfJA27EptaKNYLCYQCPjDGR3Yv9qVVCpVR+dvMp26EqHytseIESP8/PySk5OVibC8vPzu3bsHDhx474LOzs4IIQKBEBERsXnz5uzs7KFDh7auxmAwHBwcHj16pJ7w2wCGYfp/Hiu84+nYbcQw7OL58/diY+Vyeb/Q0PFff11eXi5H/xveSN+hhDXwlmmv+6KnRPd8i7zTWf5cnhihDDL5kKnpgQsXlGNBfP7fUsfelThtaCOZTNaGRNjmu1Ltr09gGFZdXa16wy86OjooKMje3v7DC4pEIj6fD8PKAI1obGwcExjoXVIS1thIRCg2Nnbfpk3j588nEW7LiHLTXmlWQ27oMmsrE0dkfzvap/OePTnHHk5+eOX48drKym7+/snh4XDoAtBeqCUR1tXVRUZGBgYGUiiUkydP8ni8ke/6CMYw7MSJE7/88otq/cWLF1taWq5du/bJkyexsbG9e/eWSqW7du1ydXXt2bOnOiIE4MN+WLp02rNnU2QyfLIvn3+hsPBmepL1mDKzwKnCtw4VcV9wc3wxhVCH2OOnTbsRQr179+7du7dGowYAfAy1JEIqlSqVSn/77Te5XO7h4ZGZmam8z1dRUTFkyJBRo0ap1u/atSv+nAuTyaysrNy8eTOZTPb19V26dCmZTFZHhACoqqysjL16taKoqJOPz+gxY+h0elJc3NZ3WRAhlNfZJH+Q/avuoi9Nhh379qyglCDBCnUIsRjx94iFE4KDgzUYPADgPyJg77q3aF8KCgrGjh2bn5+v6UD+kja8AdIx2nji4MGo9etn8ni2MlkelXrBxGTfhQsLR43K5nCa6OT4/jbXBtpjBMKXd0ojC5ozSivkcvmuXbsy0h46uzouXLjQ1tZW0y1oAx1jV36YNrRRSx6WafNdCYlQXbThr64DtPHFixez+/a9zeXqvispR2iklRXVxTikMzmjp2WfvOov7rK7F3BFCPW3tc1+80aT4apNB9iVf0sb2giJ8ONAX6NAuzx48OBZXh7TzCwwMNDc3Pz80aOL6+qUWbCeQUnra2MxyBEzNHwc9+Lo8iTzRjFCSI7QCgOD6RERGowcAKAmkAiBtuBwOFNCQmxKS/3r60t0dSP19eesXVv1+nUwhslJhExP8/j+tjldTfvlVPU5+tRl1dZqj5KQ1D0DjaQEhJIplC9mzly4fLmmGwEAaHtwaVRdtOE6zOfcRrFYnJ+f39zc3KVLF0NDQ4RQSJ8+y7OyBr474KUIfcFkWk0KpfFyK/ysrDmCYffKBmRU6olki5jM8ZcvBwQE1NfXZ2VlyeXyPn36dOx+iz7nXdlWtKGNcGn048AZIeiAzp88+X8rV/aQyagKRSaROHzy5FlLlypKS5VZsIZJveNnbdTX5rUJr/kB5fDPD7pUCfBZzxF6aGi4098fIWRkZBQYGIhhmK6u7l9uDADQzkEiBB3Nndu3jy5enMLj4b8YFQitP3jw56oqZ4WiiU5O6c1K9LcutjPsn/12we/PfiRbb/jll8mJ4aEGRPumpsdGRrlmZr9fu/a3fTIBADoM+GsH7ZhcLj+wa9eJqCi5SKRDp09fsmT2woW7Nmz47V0WRAgREVojFwfUPWLO6TzeUb/H89qxCa99H1eTZYrHCFkP7z185Mj+AwakpKSUv3kT5u7+W0AAkUjUZKsAAJ8WJELQjk0ODXV98CCpqYmGkBChn9etm5GYWFle7ooQQkhI1Un3tkjuzcrpasp8LZC+En+/606AUIovq0DoZ2PjeUuXIoT09fVDQ0M11w4AgCZBIgTtRmZm5qOHD/UNDfsHBDg4OKSnpxOzs396N5gDHaFNTU3j09MJpowrAbaZvVh5nU08X3ADH75ddShvqL7x4eTk2Xmj/Kqq+jU21pBIJ4yNR4SHD4FOYQDQepAIQTvQ2Ng4NTRUr6BgII9Xp6Mz1dBw0JQpdCOjEVyusk6VGf2Bj4WOj6VeJ9PzT6pnpZWv3/tITyRDCGUjZNTNwd3d/V5BwY0bN56kp5taW58ICXF0dNRcmwAAnwtIhKAdiJg8eWJm5nipFCGEJJLFNTWzjxyRDBpkQyDkOxml+VikeVvUGer2zeV0jX/tQR96L+3WjcImQ5GMjtBtKvW4mVnMmTMIISKROHLkSGUX8AAAgCARgs/Q7cTEm6dO1VVXe/brN3vRIjKZXJCRcVwqVVbg61OGd9Hf6VJ7aO9Q+3qRfy5nefSTzsX1RAybZGISMXjo6nXfXTx//nBMjEgg6Dlw4P1Fi2g0mgZbBAD4nEEiBB/v7du3urq6qm/vHjxwcM+OozW1DW6dbfYc3NmlS5d/tUKFQjFz9Gjs/v1ZdXVMhB7cvh0UFfVrdLQ1kSgnEZ67GGd7mGV1M2NbG3jn18qLGw2eEd2Ss6YLhWSEJAhF0ulSb29fX1+EUNiECWETJrRxgwEAHREkQvCvyWSybT/9dOrAAXuEuAiZu7puP3HCycnJy9238IWuBPsFIWvOg4zuHsN/+XXRylUrEEJlZWVZWVk6Ojq9evVisVj4eu7eufPbhg3l5eUmTOakRYumzJp1+vhxZlLSdj4fr9BVJnUnNa0+sYE003Wko7d1tbDn05o55ws9XtbVyRQPPT1jsuJ3/vqr35EjSCIh6Op+PXfuqVWrNPa9AADaJ+hiTV3+eydAGIaJRCI6na5aWFNT8+TJE11dXS8vL9X1KxQKDodjbm5OIpH+y0Zbq6ioyMjIkEqlPXv2dHFxQQgtmjzZ9PLldUIhPlZkBkLzraxGzZn7608ZEuyWyqK1ZKJnTV3Bz8uXZ129OlQgkBGJcTTa0ClTvtu6dfOGDVl79/4fj+eKUDVCmxmMCl9fmUi06f49spVBXmdmbhfTx+4mdJGs9rVAR6A/9UraVzyRctULGAzfbdumzp7dto1tTSKRaEPPMtrQ/Zg2tBG6WPs4WnFGyG4o++7e/7mZuHqauXcz62JvaENABE0H9SHl5eUrZ80qysujYZiAQpm3atXshQsVCsWGJUuSzp8PlEqbicQlZPK8tWvnLF7M5/O/X7r07vXrdkRiuULRa8CAX/fuNTEx4XK5P37zTXpyMiaXW9rYfB8V1atXL3z9WVlZebm5hsbG/fv3t7S0VG6Xx+OVl5c7ODgoD7Ifv/028fffQwUCskIRbWDgNGDA+m3bHsfH3xcKlUv5IrS4unrNzuMS7Nif22FKwgZMnzDB4/79ZIEA/8bXNzVFHDoUaWh4/eDBezwe/uK6CYkw24y4Qb+C08t02cShes0yr0KuXy5nwel8c65onqnp+HPnNj9ZebekZDCPxycSz5mYdB89esqsWWrbAwAALaItZ4SlDWVPa/Kf1hQ8rc5vkgq6mXZ2N+3UxcTN3bSTHpn+98v/ex/9m6Wurm6wp+e2ysoBGIYQEiC00sDAdPZsApGo2L//x3cZpRmhyUZGkw8f3r9581ePH0+TSvHyiyTSzk6dzt+5M6JPn3WVlaPlcgJCLxAKZzKX7t8fOHjw1NBQxsuXAfX19RTKJX39ycuWRaxezWazF0+axC8qcsCwAoQ6+/tvPXLkyrlz2atX7+Hzlf2sRNJoeUOH2iQnb66vV425BCEvsnWTNBEhd9VyCmGlud6+kqYmsuo3g1BPC4uJqHmgDe25q/FzV2aRPYNVI2QW1j2s11mdWhDKa1ZdSV8zs9gXL4yNjZOSkrJSUxkmJkGDB3fu3PkjvtuPAGeEHYY2tBHOCD+OtiRCVVwR73ltYX7ti4Laly95xeZ0084mrp2YLp2Yzq7GjlQdaptE+A93FZfLPbp374ucHJaDQ9jMmZ6enhvXrbOKjJwhkynrKBDqY2YmRii3pkb1umcFQqNcXDzq6qLr6lTXuYLBeOPnF3b79ji5XFlYj9BAa2vnTp2mpKZ+8a5chtA4Y+OZR4/+uGTJb2y2/7vKl0mkqG7dJCLR9ZcvjVTWrECoE5M5DKGoP2/xKUJDDa2qGiIxNEm1XJcY4GLw5FlDA0KoiU5+4WRU6GhY6GSU5MKkkQk+r+q7vOJ1e8XrXMzTE8lSETo0cmRJWto1Ltfk3Rr2USg5I0Ycvnjxb79JNYFE2GFoQxshEX4crbg02oIJzTjA1i/A1g8hpMAUJfXsQu7LF3XFCa+TShvesPQsXJnOzsYOLkaOzsaOxlRD9UVyJyFh1dSpC2trF8jlFQitOHWq3/TpuWlpk1WyIEKIiFBPmawAoRZ3/6wR4tbUBDQ2tlhtYGPjiszMYypZECFkhJCVRFL55MkXKuU6CG3k8WavWTO6psZfpfJoufxGWdlDAkE1C+KRWJFI9xASIqR6Hn1aX3/ektk//7JWpghAyBYvpJtGm3Wu13NwWm+q88qe0WBA6fS6we11fUBm5dXbNaYcwebaWtWVJ+npDR071nTu3OD5833EYqZUmk4mdxs8ePeRI3//VQIAwMfSxkSoikgguhg7uhg7jkAIISRTyF83sIvqSorrX2dUZBfzSnVIOk5G9o6Gdg6GtvaGdg6GtgYU/TbZdHNz87fTpt3mcEwRQgh5IxRaW/tldLTUwUHSqrKCROL9OTsihJoRIpLJQhIJ/XmWgEBABELrfqPFCkXrnlRcEaqrqOitcs8P58vjpTGZIoRavH/XiNCqyMjhy5dv4XJ9EOIitNvA4EnXrtErFhFsqUcuf0FjWdNtqFTrZoJU4e0Q8jariJqQteVsvjVHSMQwhNBuXd1R8+cXFRRsS0lZ2tyMZ/crJFKclVXK119TKJRBQ4c+e/aMx+N9262bubn5h79GAAD4j7Q9EbagQyS5Gju5GjspS6qFtaX1b0oa2Pm1L28UJ7Ibyikkih3D2sbAypZhbWPAsjGwYulbUnX+/tJZTk5OTEyMQqEYN25cr1690tLSBojFpioVCAgtqqvb4eZ2kUZbLfrfE5IihDKJRBcvr+TU1CCVS9kHqNQvxo69cPHi/Npa1Yd/zjKZPXx9E27eHKlSWYDQWx0dRasr4WyE6AxGA5+P/jyLR6H49Ou3MyFhjUok53V0egcGjpg4luFuEXl8T6WommZtaNjJAqPKwuOX2dvbLtowW1TRJKxoCvUe1q9nX4RQQ9+GcdcGckSNIzFMjtAFY2Nut25nN21CCG3esMHnxAkWgVCLYd79+1/fvx+/pEMmk729vf/2+wQAgDahjfcI/6NaIbeMX1nWWFHOryxrrKxoevu2iaNP0WPpWVjpW7L0LczoJuZ6pvpIz9HMHn8SR6FQ+HoHPX5WQ8DGYIiACJe6dTZa88M3xdOnr/7zqdgThLaFhLxms8eUlISLRDSEChBazGRO2bRp8IgRYwICRrx9O0wobEborJERu0uXmDt3/m/duvyjR3/m8dwQKkXoJyMjvREjVm3a9EXv3turqvDEWYnQXGPjr7ZsOXPo0OqsrP4KhXKLMwwNu65dmxIZeY3LVWZTCUIBZmZHMpJ/XP+ttPKVB1UuMKW/ZDH4LIaejTEiIGt9lpWBpRmF6WTqaM+wtWVYfeBEGcOwmzdvPrh5U4dMDhw5ctCgQX/6PmtrmUzmZzvyEdwj7DC0oY1wj/DjQCJsG7WiurdNVZX8qipBTbWwpkbIreJzapq5Cgwzp5tUvKrkFFPFDUMkjUbSRkNpIwPxj7g5vLJ7WXjqTRVRZRecJJHK1qxZtn79zo0br589KxaJbB0cVm3d2qdPH4SQVCo9efRoZkICTU9vwKhRX4wejS91OzFx/88/s9lsG2vrGStW4OVv3rxZGx5e+PgxUaGgm5is3b49eNiwysrKCYMG9aqs7CdsqjbQjbE26/rF0HHzZhw9tv/tizxvHYXCSLfSUJdtqkcypjJoDBMaU6eZJKyspwgJHp19hvYdYq3PYuj+cQhqw38WSIQdhja0ERLhx4FEqC74rhLJmmuEtT38BhGNosgMEcWojsxoJOs3kg3qKQZPaYZkRCXSm2X6AqmBUKojlD5DpL79B5oyTHR1dKkkXTJJh6pDJRFIdPIft+roOjQS8T2vzMsVcqHsj2uYAqlQgSkEUqFCoWiSCmQKmVAq4kuaRLJmkVQkkAp5oga5QkrGKEw9Y1N9pqEug0kz5nPqn6Vk1pfV2JjYTJ+1qG93PzKJ3HpDrdvYtt/b5wYSYYehDW2ERPhx4B6hetF0qHYMm/pCsUwxpMUsHaJjeWXGvHHjZOxXzkRZhRH9uZH+vLUrHdycmyQCsVwslkukcilf3CTD5KLGP5KcUCaSK+SttoNIBCL93QuRemQ6kUCkk2kkMomlb0EikvTIdH2yHo1MpevQ6GSaAcVAmVn/BEZlAABoH0iEnwKBIEFI/ufXHxQIiS0sLC6nphYXF+fn51tbW3t6eurowB4BAIBPCv7tfgrdOjs8fb5HhhYrS3TQwc4uf7xv5+zs7OzsrKHQAABA20Ei/BQSkq+5Ofdq4t+XYNMQIlIIx+l66XfuZWk6LgAAAOgzfWa9vZPL5YmJicpJU1NTbsPrnzb18PXZ0tv7/37Y6MXjszvAq+LJyckilbcMO6Ti4uLCwkJNR6FeEonk7t27mo5C7e7evSsWizUdhXq9ePHi1atXmo5CvUQiUVJSUtuuExKhWlRUVCxZsqRF4apVq9JzkjMfpaxZs0YjUbW577///vnz55qOQr0uXrx45swZTUehXiUlJStXrtR0FGq3evXq4uJiTUehXmfPnr1w4YKmo1CvgoKC7777rm3XCYkQgA9pp+8XAa0FR+xHgEQIAABAq0EiBAAAoNXaa88yWVlZgwYNwjse+wyJxeKsrKx+/fppOhD1evjwobu7e8fureP169dyudzFxUXTgaiRUCjMy8vz8/PTdCDqlZ6e7unpqaenp+lA1Ki4uJhIJDo6th5mpuPg8/n5+fn//J//6NGjFyxY8OE67TURymSy33//3dbWVtOBvB+GYWw228HBQdOBqNebN2+sra1JpPd0+dZhNDQ0yOVyJpOp6UDUSEsO19LSUnt7ewKB8PdV2626ujoikWhkZPT3VdstuVxeXl5ub2//D+s7Ojr+7Yva7TURAgAAAG0C7hECAADQapAIAQAAaDVIhAAAALQaJEIAAABajfTDDz9oOoYOKDU19e7du7q6umZmZpqOpS1xOJzs7GwikWhoaKgslEqlcXFxGRkZJiYmDAZDg+G1iby8vMTERDabzWKxVMfjZbPZV69eraqqcnR0JBLb8S9IDMMKCgqSkpJycnIQQpaWlspZTU1N165dy8vLs7GxodHeN2JlO/TkyZNXr17Z2dkpSx49ehQXFyeRSGxsbDQY2H/H4XAyMjJK3jE2NlbutaKiouvXr3O5XEdHxw7woGxjY+ONGzeysrIwDFMesW15uGKgrc2dO9fNzS08PNzc3Pz48eOaDqfNDB06lEaj6enpbd++XVkolUoDAwP9/PxmzpzJZDIfPHigwQj/u/nz57u4uEyaNGnIkCFmZmZPnz7Fy2/fvs1kMmfNmtWrV69hw4bJ5XLNxvlfVFVVubq6Tpw4cdq0aRYWFhEREXg5l8t1dXUNCQmZMGECi8UqLS3VaJhto6SkxNDQ0NHRUVmybds2a2vr8PBwBweHDRs2aDC2/+7s2bNMJnPwO48fP8bLr1y5YmJiMmfOHC8vr/Hjx2s2yP8uJyfHwsJi6NCh06ZN8/Lywgvb9nCFRNjGXrx4oaenV11djWFYXFycjY2NVCrVdFBt4/Xr11KpdPjw4aqJ8NKlS25ubmKxGMOwbdu2DRo0SHMBtoHi4mKFQoF/nj59+uTJk/HPfn5+e/fuxTBMKBQ6ODjEx8drLMQ29fz5cwKBwOPxMAz79ddfhw8fjpfPnj170aJFGg2tDSgUiuDg4GXLlikTIZ/PZzAYOTk5GIYVFxfTaDQOh6PRGP+Ts2fPDhkypEWhQqFwd3c/ffo0hmENDQ1mZmaZmZmaiK5tyGQyV1dX/K9P1caNG9vwcG3HV3g+Tzdu3AgICMCviA4ePJjP5z9+/FjTQbUNBwcHHZ2WA1jGxsaOHDmSQqEghMLCwu7evSsUCjURXdtwcnJSXkeysrKSSCQIodra2vT09LCwMIQQjUYLCQmJjY3VZJRtRygUGhgY4FeAY2Nj8TYihMLCwjpAGw8ePOjg4DBw4EBlSWpqqomJiY+PD0LIycmpa9euCQkJmguwDTQ1NcXHx2dnZ0ulUrykuLi4qKho1KhRCCEGgxEcHNyud2VOTg6Xy500aVJqampeXp6yvG0PVxiYt41VVFQobzyQSCRLS8uKioqePXtqNir1qaio8PDwwD9bWVkhhCorKztAh2Rv3749fPjw77//jhCqrKykUCjK273W1tb43bV2bdq0aWw2u6Sk5PLly/j9lYqKCmtra3yutbV1ZWUlhmHt9/ZSZWXlzp0709LS0tLSlIWqf54IIWtr64qKCk1E12YEAsGePXsKCgp0dXVv3rxpZ2dXWVnJZDKV98zaexuLi4sNDAyCgoJcXV0fP37cpUuXixcvEonEtj1c4YywjclkMtWdoaOjI5PJNBiPusnlcuWTI0QikUAgdID2NjQ0fPnllzNmzAgODkZ/biNCiEQidYA2hoeHf/vtt35+fuvXr8dPJlSbSSKRFAqFQqHQaIz/yfz58zdu3GhsbKxaKJfLO9KfZ1hYWF5e3rVr1woLC7t06bJ69WrUqo3t/XAViURsNnv37t3nzp3Lzc3Nycm5cuUKauvDFRJhG7OysqqurlZOcjgc/Dypo2KxWMr21tTUKBSK9t7epqam0NDQXr16bdq0CS+xtLRsbm5ubGzEJzkcDovF0lyAbcPf33/kyJFnzpx5/fp1cnIy+vOu5HA4FhYW7bcX2WfPniUlJcXHx4eHh0dFRdXW1oaHh9fX16u2ESFUVVXVrg9X5Q4ikUjjx4/H78JYWlryeDxl8mvvh6uVlRWZTPb390cI0en03r17P336FLX14QqJsI0FBQWlpqaKRCKEUE5Ojlwu7969u6aDUqOgoKDExEQMwxBC8fHxPj4+7foNCqFQ+MUXX7i5ue3evVv5s9rS0rJz5874zSSFQnH79u0BAwZoNMw2IxAIhEIhvsuCgoLi4+Px8oSEhKCgIE1G9t/Y2NgcOXIEf5aye/fuNBpt8ODBurq6fn5+paWlbDYbIVRXV5eTkxMYGKjpYNtGTk4OPgiBq6urubl5UlISQkgmk929e7ddH66+vr4UCgXfZQihV69e4c0cMGBAGx6u0Ol22wsODsYwLDQ0dN++fVOmTFm/fr2mI2obx44dS09Pv3Xrlo2NjYeHx6xZs3r37i0UCr28vHx9fT09PSMjIw8cODBmzBhNR/rx5s6de+rUqYkTJ+JXXezt7deuXYsQOnny5IoVK5YvX/7w4cPnz58/evQIfz6oPbp48WJMTIyXl5dUKo2JibG1tY2NjSUSiWw228fHZ8aMGfr6+jt27EhJSekYv+Fu3LgRERFRUlKCTy5evPjevXvTp08/d+6cs7Mzfhu4nZo/fz6VSrW2tn769OmlS5du3bqFD/22Z8+eyMjIpUuXJicnczictLS0dv3m6/r162/evDl79uy0tLTs7OxHjx7R6fS2PVwhEba95ubm48ePl5aW+vr6fvnll5oOp80kJye/fPlSOTlw4ED8oZi6urqjR4/yeLyQkBD8Ckb7lZCQUFpaqpw0MzMbPXo0/jk5OTkxMdHMzGzGjBmq/Qm0O/X19bGxsS9evNDR0fHx8QkNDVX+lywtLT116pRMJhs3blyXLl00G2dbefPmzYMHD77++mt8UqFQnD9/Hn/sYuLEia0fhG5HcnNz79y5U1tba2VlNWbMGNXngOLj41NSUqysrGbMmNEBhmC8evVqRkaGvb395MmT9fX18cI2PFwhEQIAANBq7fh8GQAAAPjvIBECAADQapAIAQAAaDVIhAAAALQaJEIAAABaDRIhAAAArQaJEIB25sKFCw8fPtR0FO/X1NTU3Nz80YsLhUJ8xA8APiVIhAC0M0uXLv30/aFkZGSsW7du2LBhLi4uw4YNa13h0qVL7u7uBgYGNBrN398/NzdXOevWrVvO73Pnzh1lnaSkpG7duunp6dFotOHDhyu71ALgE2jHvSoAoJ1Wrlzp5ub2iTd6+PDhCxcu+Pj4CASC8vLyFnNv3LgRFhY2ePDgXbt2SaXSH3/8cdCgQbm5ufb29gghR0fHuXPnqtaPjo5ms9nKPrGePXsWGhrq5+cXFRVVX1//zTffBAcHP378WDmWEADq9V9G9QVAe1RXV3O53PfOEovF1dXVH1hWJpO9ffu2ublZWcLhcBoaGv52oxKJpKqqSigU/pMIuVyu6iZUSaXSt2/fCgSC1rPEYvHbt2//dhM8Hk+hUGAYFhAQ0LVr1xZz+/fvb2VlpVxJdXW1vr5+eHj4e1fV0NBAp9MnTJigLBk/fry+vn59fT0+iXcY3XpQcgDUBC6NAq129+5dJpOJj0OktGnTJhaLVV9fj0/u27fP1tbW3NzcxMTEw8MjJSVFWfPo0aPdunXT1dU1NzdnMBhff/01j8dTzg0KCpo5c+auXbvMzc1ZLNbRo0cxDFu7di2DwbCwsDA0NGQymVu3bn1vYOXl5aGhoTQazdLSkk6nd+rUKTs7G5/Vo0cPZU/uR44cYTKZWVlZffr0MTEx0dfXHzJkSG1trXI9AoEgIiLCxMSExWLp6em5ubndv38fn8Xn8+fOnctkMlksFoPBGDVqFIfD+asvysjI6AOjnj59+rRv377KEzgzM7Pu3btfvXr1vZXPnDkjFApnzpyJT2IYduvWreDgYGUPrgEBARYWFteuXfurzQHQtiARAq0WFBRkZGR08OBBZYlCoThw4MCAAQOMjIwQQpGRkYsWLZoyZUp2dnZGRoaTk9Pw4cMLCwvxyhwOZ8GCBRkZGfn5+Tt37kxISJg1a0cG8tUAAAeaSURBVJZyVY2NjTdu3Dh8+PCBAwcePHgQGBh45MiRrVu3RkZGFhYWPnv2bO/evX/Vf/ecOXNevXp18+bN4uLizMzMefPmYe+6BcbPJvHPzc3NPB5v4sSJkyZNysrK2rNnz/379zds2KBsy8iRIw8fPrx27dpHjx5lZmbOnTtXIBAghORyeWho6LVr16Kiop4/f37x4sUnT56EhobK5fKP+BqJRGKLBeVyeVVVVU1NTevK0dHRNjY2gwYNwid5PB6fz/fw8FBdW9euXfPz8z8iEgA+hmZPSAHQuE2bNlEoFOW1zevXryOEkpOTMQyrr6/X09OLiIhQVm5ubrazs1uwYMF7V7V//34CgdDU1IRPent7U6nUsrIyZYXw8PAuXbr8k6hMTU2///77986ytrZetGgR/jkqKgohtG/fPuXc2bNnW1hY4J/xc7L9+/e3XklMTAxC6M6dO8qStLQ0hFBCQsKHA3vvpdHAwEBTU1Plxd6ysjL87DA/P79FTXxUVdWm4SW//fabarVx48bp6+t/OBIA2go8LAO03ezZs3/88ccTJ058++23CKGDBw+6ubkFBAQghB48eCAQCKytrW/fvq2s7+Dg8OzZM+Xkw4cPExISqqqq8PtwGIaVlJQoz2969eqlOjiOt7f3gQMHJk+ePGnSpMDAQDqd/ldReXt77969Wy6Xjx071tPT88PjyQ0fPlz5uUuXLkeOHBGLxbq6uomJiSQSafr06a0XSUhIoNFocrlc2TQMw8hk8rNnz4YMGfKh7+t91qxZExISMnjw4MWLF0ul0sjISCqVig9P3cKRI0cIBMLUqVOVJfipZIsG6ujofNy5KQAfARIh0HampqZjxow5ePDgsmXLKioqbt68uWXLFvx+GH7PbNOmTS3+TTs5OeEf5syZc/To0YEDB7q6uhobG+NXHZXXLRFCFhYWqgvOnj2by+UePHjw1KlTVCp1+PDhW7duVa5N1fHjx1esWLFz585ffvnF0tJy1qxZGzZs0NXVfW8TjI2NlZ8pFAqGYVKpVFdXt7a21szM7L1LcTgciUQyYcIE1UL8iZUPfVl/YejQobGxsVu2bFm6dCmVSp0yZUpjY+PevXtbNF8ikZw6dWrQoEGqTWaxWAihuro61Zq1tbWqjQJArSARAoDmz5/fv3//lJSUlJQUHR2dyZMn4+X4DbwrV64EBQW1XorNZh8+fDgqKmrhwoV4ycWLF0+dOqVap0UGJZFIa9euXbt2bWFhYVxc3K+//jpixIj33gxjsVgnT56USCSZmZnnzp379ddfiUTiTz/99K/aZWRkxOVyZTJZ6+FnDQ0NGQwGl8v9wCMw/8rw4cNVT0z79+/v4uLCZDJV61y9erWmpkb1NipCyNTUVFdXt6ioSLWwqKioU6dObRIYAH8LHpYBAPXr18/Dw2P//v1Hjx4dN26cmZkZXu7v708mk/Hbaa3hY9n36NFDWXLz5s1/uMXOnTsvXbp0xYoVBQUFqmeQLVAolP79+0dFRfXq1SsjI+MfrlwpICBAKpVevny59azAwEAej5eYmPhv1/lPpKWl3b9/f8aMGS3Ko6OjjYyMvvzyS9VCIpEYFBR069YtZZ8yeXl5paWlQ4cOVUdsALQGiRAAhBCaN2/e+fPn2Wy26qvflpaWS5Ys2b9//3fffVdaWioSiV68eLF79+7jx48jhDp37qyrq7tly5aampq6urotW7ZcvHjxw1vZuHHj6dOny8vLFQrFy5cvr1y54uLi0vrBUbFYPGvWrNTUVB6PJ5FIEhIS8vPzfXx8/m2jwsLCunfvvmDBgrNnz/J4vJqamkuXLuEPxUyaNMnDw2PatGnnzp3jcrn19fVZWVnLly8vKCh476pev34dExMTExNTU1PT2NiIf37x4gU+t6CgYNeuXY8ePSoqKjp+/PjYsWM9PDy++eYb1TWUl5cnJiZOnjy59Wvyq1evrqurCw8Pr6ysLCgomDNnjqmpaYt38AFQIw0/rAPA56GhoUFPT8/d3b1FuUwm++mnnxgMhvJPxt7ePiYmBp975MgRPT09vNzT0/PYsWMIoXv37uFzvb29x48fr7q25cuXq6YBb2/vvLy81sGIxWJPT0/lRUv8aq3ydfXWT42qvpuPl/D5fHyyqqoqNDRUuSojI6O4uDh8FofDGTNmjPLiLZFI9PX1LS0tfe/3c+TIkdb/PTZv3ozPzcnJ0dfXxwtJJNLYsWNb9zCAX9d99OjRe9cfHR2t/JKdnZ0zMzPfWw0AdSBg715OAkCbsdlsZ2fnbdu2LVmypPVcqVRaUFAgFoutrKysra1VZ/H5/KKiIn19/X94T0sikZSUlDQ2NlpZWak+UNpaXV1deXm5XC53dHTEX2rEKRQKAoHwr+7tcTgcNputr6/v4uJCoVBUZ9XX1798+ZJGo9na2qpu5d+SSqVFRUVNTU3Ozs4mJiYfsQaRSJSfn0+lUt3d3T/8lCwAbQsSIQAIITR37tyYmBg2m6168gcA0Abw1CjQduvWrTt9+nRpaen+/fshCwKgheCMEGi7O3fu4CMhfMTTKACADgASIQAAAK0Gd6QBAABoNUiEAAAAtBokQgAAAFrt/wHgDs9ZoX1XxwAAAABJRU5ErkJggg==", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = 2\n", "V = r.^(0:n)'\n", "p = Polynomial( V \\ (y/1e6) )\n", "\n", "scatter( 1:54, pop'/1e6 , title=\"population of UK\", label=\"testing data\", xlabel=\"years since 1970\", ylabel=\"/millions\",color=\"red\")\n", "\n", "println( \"training error: \", norm( p.(r) - y/1e6 ) )\n", "println( \"testing error: \", norm( p.(1:54) - pop'/1e6 ) )\n", "\n", "scatter!( r, y/1e6 , title=\"population of UK\", label=\"training data\", xlabel=\"years since 1970\", ylabel=\"/millions\",color=\"blue\")\n", "plot!( p, -5, 60, label=\"model\" )" ] }, { "cell_type": "markdown", "id": "f098219e", "metadata": {}, "source": [ "This is known as linear least squares (because we are minimising $|Ax-b|^2$). The choice of polynomials is somewhat arbitrary: we still get an overdetermined linear system of equations if we instead took $p(t) = c_1 + c_2 t + c_3 t^3 + c_4 \\cos t$ " ] }, { "cell_type": "code", "execution_count": 290, "id": "aa0adc8a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training error: 0.5283726651045577\n", "testing error: 3.3411811246054257\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdZ1wU1xYA8LOdjvQuTVEBRcCGvQCiBsWC2BVjrxBj1KjRGIw1xoJdsXcjil1BURErSldEqvTet+++D/Nc12VFRXaXcv4f3o+5c+fO2Y2Pw525hSQUCgEhhBBqqciKDgAhhBBSJKqiA0CoeTpx4kR4ePiSJUtsbW0bpMGZM2dqa2tv2rSpQVprWDk5OZcuXXr//j2TyezRo4evr6+iI0LoO2CPECGZePz4cVBQUHZ29nddVV5efuDAgRs3btQ+FRQUdO7cuQaKriG9ffvW3t5+4cKF+/btu3DhwvPnz6VWO378OIlE8vLyknq2ffv2JBJJ/Fp1dXUSiZSXlydejc/nz5w5k0QiWVpavn//vgE/BWrJsEeIUCOSn58/e/bswYMHDx06VOLUgAED9PT0FBJV3Xbt2lVaWrpt2zZ/f3+Z3ojD4UyePPn8+fPt27e/e/euqampTG+HWg5MhAg1DaGhoYoOQbqkpCQA8PHxkeld2Gy2j4/PlStXnJycbt261Tj/JkBNFCZC1IQlJiYymUxHR0cOh3Pz5s20tDQdHZ0hQ4bo6+vXrlxeXh4aGpqRkcFgMLp06dKtWzcSiSRe4dWrV1QqtVOnTuXl5Tdu3MjJyTExMRk6dKiGhoZ4tZiYGKFQ2LlzZ4nG379/r6+vb2ZmVkfA5eXlkZGRmZmZVVVVpqamAwcOFP+FnpOTk5CQAAAVFRVRUVFEoajNV69e0el0e3t78QYFAsGTJ0+io6M5HI6FhYWrq6u6urp4hYyMjKKiorZt22poaDx9+vTFixckEqlnz55OTk51xCkuJyfn3r17ubm5Wlpaffr0adeunehUZmZmYWEh8fg3KSkpNzcXAOzt7RkMxjc2/o2qqqq8vLzCwsL69Olz9epVTU3Nhm0ftXRChJosIitERES0bt1a9E9aVVX1xIkTEjWPHz/eqlUr8X/5Li4umZmZ4nUYDIaxsfGtW7fEa+rp6YWFhYlX09bW1tLSkmj/2rVrALBo0SJRyezZswHgzp07ohJ/f38ajSYeg5KS0tatW0UVVq1aVfv/oX5+fsRZMplsbm4uftOUlBRnZ2fxyjo6OufPnxevM3PmTAAIDg4eNmyYeM2ZM2cKBIK6v16BQPD7779LxDx+/Pjq6mqiwrx582oH/P79e6mtHTt2DABGjBgh9SyRX589eyYqUVNTA4Dc3NySkpIePXoAwJAhQ2pqauqOGaF6wMEyqMkbO3Zsjx49Xr16lZGRsW/fPhKJNG3atEePHokqXL16derUqXw+PzAwMCkp6fnz597e3k+ePHF1da2urhZvqqKiYuzYsVOnTk1MTExJSQkICCgpKRk+fHhaWtqPx1lUVDR//vzr168nJCTExMTs27dPW1v7119/DQkJISpMmzbtyJEjANClS5e7H82dO1dqa+Xl5YMGDYqKipo8efLLly+TkpK2bdtWU1Mzbty42g9Rf/nll8zMzHPnzr1+/fro0aN6enoHDx68cOFC3QH/+eeff//9t4mJyYULF1JSUkJDQ7t27XrmzJmJEycSFRYuXHj37t22bdsCwKVLl4iAjY2Nf+RbkpCXl9evX7+nT596eXkFBwcrKys3YOMI/Z+iMzFC9Uf0CLt3787n80WFR48eBYDevXsThwKBgOhtnDlzRlSHz+f369cPAMQ7ZMQDvQkTJojfguil+fr6ikrq3SOs7dWrVwAwcOBAUQnxvm3w4MG1K0v0CNetWwcAQ4YMEa9z8OBBAHBwcBCVED1Cc3NzUTdOKBSePXsWALy9veuILT8/n8FgUKnUt2/figrLy8sNDAwA4MGDB6JC4ilrcXFxHa0J69sjJG43Y8YMHo9Xd/sI1Rv2CFGT5+/vTyZ/+pc8YcIEIyOjiIiIgoICAEhISEhKSrKysho7dqyoDplMXrZsGQBcunRJorUlS5aIHy5atIhKpQYHBwtlsAaTo6Nj69atvzTfoG7BwcEAsHz5cvHCqVOnGhkZxcTESEwtmD9/voqKiujQzc0NAOru5l6/fp3NZo8cOVL8paCGhsb8+fMB4L///qtHzPVQWFgIAHZ2dhQKRT53RC0QJkLU5Dk4OIgf0mg0oqdIDDwh/rdz587iyRIAiLdrxFkRMpncsWNH8RI9PT1TU9OysrLvnRFYG4vF2rx5s4uLi7GxMYVCIZFIJBKJGDjDZrO/t7XExEQAkBjzQqPRiG+DOCsinswAQFtbm0ajSUzRk9q+o6OjRLnU7012Dh8+rKSk9Msvv+zcuVM+d0QtEI4aRU1e7ZH0REllZSUAVFVVAUDtcaR6enpkMpk4K6KlpSUxNoS4Nj09nWit3vh8/uDBgx8+fGhtbT1q1Cg9PT0lJSUA2L59e15eHo/H+66Rllwul81mq6ioEM8PxRHPEiWiFe8OEshkct19XOKbIVoTR3yT9fg2iC4di8WSepbJZIrqiPPw8AgODh45cqSfnx8ALFq06Hvvi9BXYSJETV5BQYGOjo5ECQAQ0x6I6QREiUQdgUCgpaUlXlhaWsrhcOh0unhhfn6+qDUAIJPJXC5XojWJQTe1Xbly5eHDhx4eHteuXRP/db9t27avfDxpaDSakpJSTU1NVVWVRC4k+nkSUz7qgfjeavcaJb6Nb0dckpOTU/uUQCAgbiQxspcgngtJJNLChQu/99YI1Q0fjaIm7/Xr1+KHHA4nLi6ORCIRD0iJ/339+jWfzxev9uLFCwCws7MTLxQIBNHR0eIl+fn5WVlZ2traosGQhoaGFRUVRA9GROJRZG1Es97e3uJZMCsrSyJDE/1RHo9Xd2uiyF++fCleyOFwYmJi4OOn/hFEC6LpjCLE9ybxAPnbG0xNTa3dKUxOTuZwOGpqaubm5lKv9fDwuHTpEp1OX7x48a5du7731gjVDRMhavL+/fdf8SR34sSJ/Pz8fv366erqAkCHDh3s7OzS0tLEF+oUCATE6tXe3t4Srf3zzz/ih9u3b+fz+aNHjxbNvre0tBQKhTdv3hTVKS0t3bdvX91BEk9rMzMzxQv/+OMPiWrGxsYkEunDhw91twYAY8aMAYBNmzaJP+EMCgrKy8vr0qWLpaXlV1uo27Bhw5SVla9cuSKe48vKyvbs2QPSvrevsrS0dHR0rK6uDgwMlDi1efNmABgxYgSV+sVnVEOGDAkODiZyYe0WEPohih20itCPIDoZrVu3Hj58eERExJs3b7Zt26aiokKlUp88eSKqdvv2bTKZrKqqunXr1ri4uPv373t6egKAnZ0dk8kUVWMwGOrq6lpaWrNmzXr58mVsbOzKlSvJZLKGhkZGRoao2qlTpwBAV1f34MGDERERhw8ftrKysrGxgTqnT8TExJBIJBUVlV27diUkJERGRk6bNk1dXZ1IkFVVVaILO3XqBACTJ0/esWPH/v37IyMjiXKJ6ROVlZXEBL6xY8c+evQoJiZm/fr1DAaDQqGIz20gpk/cvXtX4qtjMBgmJiZ1f71///03AJiamp48eTI+Pv7q1avESJxx48aJV/vG6RNCoTA8PJxKpZLJ5OnTpwcHB4eHh589e/ann34CAC0trdTUVPHKogn14oU3btxgMBgkEmnXrl1fvR1C3wgTIWrCiET47NkzKysr0d92mpqaFy5ckKh54cIFiTE1gwYNysnJEa9DrCxz79498TeOxsbGERER4tUEAsHcuXPFl2cbN24cMZ2g7nmEO3bsEB+Jo6enFxoaSqQ98UT46tUrR0dHUft1rCyTmZnZu3dv8Q9lZGQUEhIiXudHEqFAIAgICBCfw04mk2fMmMFiscSrfXsiFAqFogn44rp37x4XFydRU2oiFIrlwsDAwG+5I0JfRRLiDvWoyerYsWN8fHxlZSWdTg8PD09LS9PW1nZ1dZUYAkNgMpmPHj1KTU1VVlZ2cnKq/ZZLSUlJR0cnOzu7uro6NDQ0Ly/PyMjI1dW19pBLAEhISHj27BkAdOnSpVOnTjU1NXl5eZqamqIkWlhYWFZWZmpqKp5IcnJynj59WlhY2Lp16/79+ysrK2dlZXE4HEtLS4mFTzkcDjGaVNTm+/fvqVSqhYWFRCTR0dHR0dFsNtva2rp3797EYFSRwsLCyspKIyMjiTVZ0tLSKBSK+NJ0X1JcXPzgwYOCggJNTc1evXrVviQ7O5vNZltYWEhMUPkS4kVsfHx8TU2NhoaGo6Njhw4daldLT08XCATm5ua1h5Lm5uYymUxiM6ZvuSNCdcNEiJowUSKsPYugHkSJ8MebQgg1IThYBiGEUIuGiRAhhFCLhhPqURPm5+dXVFQkMf+93iQGhiCEWgh8R4gQQqhFw0ejCCGEWjRMhAghhFo0TIQIIYRaNEyECCGEWjRMhAghhFo0TIQIIYRatEaaCB8/fhwaGqroKL5CIBAoOgQ5aTlzbPCTNjPEksqKjkIe8JP+iEaaCB89ehQWFqboKOoiFApramoUHYU8CASCFvJJ+Xy+xHa7zRWPx6u9O26zxOPx2Gy2oqOQBy6Xy+FwFB2FPHA4HC6X27BtNtJEiBBCCMkHJkKEEEItGiZChBBCLRomQoQQQi0aJkKEEEItGiZChBBCLRomQoQQQi0aJkKEEEJNRkZFVlZlTsO2iYkQIYRQ01DDZf7xeGNBTVHDNktt2OYU6/Dhw3v37pXb7QQCAZncIv6S+PZPSqPRbty4oaWlJeuQEEIt0L7XRzvr2zsZdGrYZptVIoyPj+/fv//48eMVHUjLNWLEiNLSUkyECKEGF1eYGJn94oDbPw3ecrNKhABgamrq7Oys6ChaLgaDoegQEELNEF/I3/Z87wLnn1VpKg3eeIt4socQQqhJu/zupo6ydv/WvWTROCZChBBCjVolp+pE/LkFzjNk1D4mQoQQQo3amcRLvUy7W2iayah9TIQIIYQarzJ2+bX3d6Z2HCe7W2AiRAgh1Hgdizs32HKAvoqu7G6BifCT7Oxsv4ULrQwNSSQSg0br6eBw+PBhgUCg6LiAy+U2hjAQQkjOCmqKQtMfTLAbI9O7YCL8v8ePH3dq3z794MFd+fnvAaJ4vEmxsQELFgzu14/JZNa72bi4uLi4uO+96v3798+ePRMdDho06OrVq/WOQcKBAwfGjh1bR4Vr166Vl5c31O0QQqjezr0JHmbtpqWkKdO7YCIEACgpKfEaOnRVdfVlNnsYgDWAPcA8gBgWq/rly0Vz59a75VOnTp06dep7r7p169bOnTtFhwEBAd26dat3DN9rzpw5mZmZcrsdQghJVcGuvJMWPqb9cFnfqLlNqK+f3YGBHTkcf6FQolwD4DiLZXvy5JqAAFNT0+9tNiEhITw8HACWL1/etm3bn3/+WSgUnj17Njw8XFNTc8aMGTY2NgCQk5Ozd+/e9PR0HR2d8ePHm5iYhISEZGdnL1++XE9Pb8mSJSkpKQYGBkZGRnfv3mWxWFVVVbdv37axsfH391dWVgaA8vLyf//9NyMjw8vLq7y83NbWtkuXLhLBHDt27MGDB7a2tkpKSkQJj8c7efLk8+fPuVxuv379Jk6cSCKRTp48WVFRsX37dj09vbFjx3bo0OH48eOvXr0ik8nu7u4jR478/m8XIYTq42LS1X5mPXWVtWV9I+wRAgDcvXJlHIsl9VQbACclpbCwsHo026pVK0NDQ0NDQ2dn57Zt2wLAokWLjhw58tNPP1lZWfXv3z89PR0Ahg8fDgBTp07t1q3bhw8fVFVVzczMtLW1nZ2d7ezsAODIkSNv374FgMePH8+ZM+f169ejRo26e/fu0qVLAUAoFLq7u2dlZXl7e4eEhCxdurT2w9i///57+/btI0aMEAqFGzduJAprampiY2M9PDyGDRu2e/duotza2ppGo9na2jo7O2traxcWFmZmZnp6eg4aNGj16tVBQUH1+B4QQuh7MXmsK+9ujrOVxx/f2CMEAMjLz69jfkprPj8npz67fpiYmLRv3x4AvL29ASAzM/P48eM5OTmqqqoAkJGRcejQoYCAgKSkpL1793bt2lV0oaOjI4vFIq6SYGdnt3nzZgDQ1dX19fUFgEePHuXn50dGRlIolMGDB1taWkpcIhQKt2zZEhYW5uTkBAAJCQk1NTUAoKGhsW3bNg6Hk5eXt3z58tWrV69YscLFxUVZWdnd3b1jx47E5evXr2exWPn5+X5+fmfOnJk+fXo9vgqEEPout1LDOhvYm6oby+FemAgBADTU1OoYHFJGoWhqNsCr2sTERBaL1anT/9dNr6iocHV1BYBNmza5ublZWloOGzbM399fR0enjkaIzAoA+vr6JSUlAJCammpra0uhUACAQqHY2tpKXFJYWFhRUSG6r6Oj4+PHjwGgurp64sSJsbGxlpaWbDZbarIvKiry8fHJzMw0NzevqKiorq7+kW8AIYS+hRCEl5KuL+uxSD63w0ejAADd+vYNo0r/m6AK4AmH8yNjVYQfXz0ST0pTPiosLDxz5gwAzJs3r7CwcNu2bbGxsZMmTQIAEokkrPXCklB7OyQdHZ2CggLRofjPBA0NDaFQWFlZSRyKRoQGBQWRSKTU1NSwsLB//vlH6h23b9/epk2b5OTk0NDQVatWfSkqhBBqQE+zo5SoDHu99vK5HSZCAIDZ8+efAoiSdmolhWLXoUO9d7TQ1dXNysoifu7cuTOVSj1y5AhxWFVVlZmZyeVy379/T6PRBgwYMHPmTKJbpqOjk52d/Y1Zp1+/funp6SEhIQBw+fLl2NhYiQpKSkr9+vXbv38/AFRUVJw+fZoor66uptFoAMDn83ft2iUe84cPH0R16HQ6AHA4nD179tTvS0AIoe9yMSnEu/0Iud0OEyEAgIODw5p169zo9CAA9sfCDwC+NNppVdWj586RSKT6tTxu3LjU1FRDQ8NRo0YpKSkFBwfv3r3bxsbG0dHRzs4uOjqay+W6urp26NChZ8+eixYtIkasDBs2jEajGRsbd+/eHQCoVGod++JqaGgEBwf/8ccfRkZGly9f7tevn5qamkSdvXv3BgUFOTg4uLi49OjRgyicNm1aXFxcp06d7OzsjI0/PYhfvnz5woUL9fT0zp49O3fu3JCQECcnp06dOnXo0KF+XwJCCH27jPIPaWUZA8x7y+2OX3wEp1gbN24sLy/fsGHDd13l7+9vbm7u5+dXv5ueO3fud3//vMJCawaDKRSmMpk/ubnt2L/fwsKifg1+SVlZGZPJNDAwEKW3oqIiNpttaGhIvOqrNyaTaWVldefOHdFQF3FZWVkGBgZEL5AgEAiys7N1dHRUVL64xRefz8/OzjYwMPiWvQatra3v3r1rZWVVv/gVi8/ns9nsOr6KZoPH43G5XGLuTfPG5XL5fL5oylAzxuFwhEJh89gQdMfL/Rp0Dd9O0rdYZ7PZJBKJeFLVUHCwzCc+Pj7e3t5xcXGpqalKSkpOTk4GBgayuFGrVq1atWolXqKr+0PL6P3xxx8sFktdXT0kJGTgwIFSsyAA1J4KSSaTzcy+sqA7hUJp3br1j4SHEELfiMVj30uPODT0X3neFBPhZ8hksoODg7W1NZ1Ob9i/OGRqxowZDx8+rKqq2rJlS//+/RUdDkII1dPd9PBO+rZ6slxiuzZ8R/hJWlratGkzNTX11dXVlZSU2rZ12LlzJ4/Hk3MYVVVVXC63jgrl5eUSa3C3bt160qRJc+bMqUcWrKmpYX1hMQGEEJKzkORbXjZD5XxTTIT/d+/ePTu7zmfOMCsqLgDkCYUp79/7L1++p0eP/qKJB/Xw7Nkz8eWzv4WXl9eVK1fqqGBpaUksSdMgVqxYQczQl4rNZh84cKCh7oUQQnVILHpXw2U6GXaS830xEQIAFBQUDB8+msXawuGcBOgHYABgCTCNyXyVkECbOXN+vVsODg4ODg7+rks2btzYp0+fOipcvHjRyMio3iF9l5qamtmzZzfOEVUIoWbm6vtbP7VxJ0E9R+nXG74jBADYvXsPn99NKJxV64wKi3XkwgWbTZv+Mjc3/95may+6HRAQ4OnpeeTIEWJa3qlTp+7fv89kMjt37rxgwQJiFN+rV68YDIaBgcG9e/cqKiqYTObly5etra1XrFihrq4OAA8ePOjcubOysvLJkyfbtm0bHh7++vXr7t27L1q0iBh0mpycvGPHjvLy8p9//vnFixfjx4+XGCbDYrG2bt0aFxfXv39/0VPW0tLSAwcOxMXF0en04cOHe3l5AQAxd3DFihUAsHDhQjKZfOjQobdv36qoqPj4+BAr4yCE0I+r5tY8+vD0hOde+d8ae4QAACEhoSyWlIU9AQDAQlm5y7179+rRrJ6enoWFhYWFhaurq6OjIwAEBgb6+vp26dKFWGj7zZs3o0ePnj179osXL2bOnElcdf78+aSkJACIjIxcuHBhYmLijBkzYmNjFy9eTFTYtWtXWVkZAAQHB0+dOlVdXX3KlCmHDh3au3cvAJSUlPTu3dvc3Pznn38ODAxct25dXl6eRGATJ06Mjo6eO3duVlYWsboNAOTk5FCp1FmzZo0YMWLZsmUXL14EAGIF1EGDBrm6umpoaKSnp2tpac2dO9fV1dXX1/fRo0f1+FoQQqi2u2nhXYw6y3rrQamwRwjw/2XJTL50ls83rZ1LvoW+vj4xB1G857Rs2TIfHx/i54CAgOrq6vz8/JUrV7q4uAiFQomZ++3atfvrr78AQEdHZ9SoUbVvMXz48Hnz5gFATk7OjRs3FixYcOrUqW7duhEbU3Ts2NHQ0FDikvT09Nu3b+fm5qqrq/fv31+0sYadnZ2dnV1hYWFlZeXMmTMvXrw4ZswYIhG6uroSgRHz8fPz842NjSdOnHjx4sW6n+IihNA3uvb+zlwnX4XcGhMhAICGhmZOTtmXzlIoJRLT/n6EaFFsHo83ffr0J0+e2NjYqKqqslissrIyLS0t8crE5k0AoKOjU1paWru12hXS0tJES8Do6OjUngqZkpJibm5OPGUFANFi3CkpKWPGjKHT6cbGxoWFhVRpi69GR0ePHz9eW1vbwMAgMzPT2tr6+78AhBCS9LY4uZpb42gg72EyBHw0CgAwYEAPGu3OF05WsNlPRcuS1YPESBNRgrl161ZiYuLbt2+vX7++e/duoVBYe0xKHSurEWqv/aanpyfqv3I4HGKHCnFaWlrEk1WCqMKGDRtGjhz57Nkz4okrEYxE+6tXr/bz83v8+PGlS5e8vLxwEA1CqEFcfX/7pzbu5PouZvmDMBECAMyfP0coPAsQWfsUlfpb586OxBu+etDX109LS5OaMDgcDp/PJ/JfHRMYvtfo0aNDQkKePHnC5XL/+uuv2lMS7e3tqVQq8Qrw3bt3N2/eJMrZbDZRuby8nHjdCAAaGhoMBiM1NVWiTn5+vmj1cIQQ+hFMHuth5pPBVgMVFQAmQgAAOzu7LVs20mgeAIEAVR+L39HpPurqV86ePVrvlidMmFBcXGxhYTF16lQA0NTUFK0mOmzYMOIlYrt27dTV1XV0dIjul5qaGrGojbKysmjdSzKZLHo8K2pEVVVVtLQgnU4n1tq2sbEJCgqaM2eOjY2Nurq6gYGB6CmoqObp06eXLFnSvn37yZMnjxo1ihitunTp0mPHjtnZ2XXv3t3d3Z24ikwmb9y40d3d3draOiEhYfXq1QEBAR07dnRzcxs+fDixwzBCCP2I0PQHjoYddZW1FRUALrr9SUhIiJ/fioyMZCUlM4GAxeEUjBgxZteurSYmXxxH8+MqKytpNJqMFgV+//69o6NjYWGh1PZLSkq0tSX/5RUXF7dq1aqOtb8FAkFpaamWlpbUx7a46HaTgItuNz9NetHtWbd+meEwqZuR07dUxkW3ZWv48OHDhw9PTk5OTU1VVlZ2cHBokI3p6ybRXWsQ48ePNzExIZFIZ8+eXbdu3Zd+C9TOggCgo6NTd+NkMvmrdRBC6Bsll6aWsyq6GNbz9VODwEQoqW3btqKhmE1UQEDAy5cv+Xz+zz//3L69nLZ4Rgiherj87oZnWw9FDZMhYCJs7NhsdkFBQR2bJZWWljIYDPEHetbW1jixASHU+FVzax5kRp7w3KPYMHCwTGMXHR1d90pms2fPPnnypNziQQihhnIzJayHcRctpQabqF0/mAgRQggpxrX3t0fYDFF0FPhoVJaio6PDwsJat2598uRJAwODgICA1NTU7du3UyiUVatWEeu/8Pn8wMDABw8e6OjozJ0718np/+Omzpw5c+HCBX19fXd3d1GDbDZ7x44dT58+1dPT8/PzE60ggxBCTU5UXgyZRO6op/jfY9gjlKG0tLT169c/evTot99+q6qq8vLy2rp16/z5862trUePHk1MXFm8ePGlS5f8/f27d+8+cODAN2/eAMCZM2dWrlw5b948T0/PVatWiRocMWJEcnLyb7/91qtXr4EDB+bm5irssyGE0I+5knyzMXQHodn3CM+9uXwi/rx87kWn0PZ7/KOnoiteqK6uvn37djKZrK6u7uDgUFBQoKen17Nnz82bNxcWFqqpqe3fvz8pKcnKyqpPnz6vX7/evXt3YGDgrl27AgICiFeDGRkZO3bsAICnT5++e/fuxo0bZDK5R48eT58+JebFy+fTIYRQAypmlr7Oi1vWY5GiAwFo9olwdDvPodZy2jOPTCKr0iTnYltYWBATzzU1NdXU1PT09ACAQqGoqamVl5eXlJTQ6XTR9PNOnToRe9OnpaWJ1ua2s7MjfkhKSsrLyxNN7WCxWJMmTZL9x0IIoYYXknxrkEXf2r8zFaKZJ0IqmaJOV1NgAOKLVtdeIFtXV5fJZFZVVRGroxUUFOjq6gKAjo5OcXExUaewsFBU2cbGJjo6Wh5xI4SQzPCF/OspdzcPWKPoQP4P3xEqkq6ubs+ePTdt2gQAeXl5R44cGTFiBAB4enru2LGDy+WyWKzdu3cTlfv27VtSUiJa6jozMzM9PV1BgSOEUP09+vDUWM3AqpW5ogP5P0yEMqSqqmpkZET8TCne9/kAACAASURBVKVSiU16Cebm5jQaDQCOHz/+8OFDExMTR0fHadOmEbvvrly5kkajmZmZ2dvbDxw4kJhNr66ufv369aNHj5qampqamg4bNqygoAAAtLW1cfFrhFATcu7NZe/2IxQdxSfN/NGoYrm7u4smP5iYmMTGxopORUVFET9YWVk9ePCAw+GIryGrpqb233//sVgsYpnQ1atXE+UdO3Z88OABj8cDsX0N9+3bJ/uPghBCDSOmIKGCXdnLtLuiA/kEE2GjIHUl9S8tli1173iEEGoSzr0JHtthhGIXF5WAj0YRQgjJSWZFdmJRkofVIEUH8hlMhAghhOTkZMKFkTY/MSgNuZvgj8NEiBBCSB5yqvKeZr8c3e4nRQciCRMhQggheTgWd3Z0O081eqMb5Y6JECGEkMxlV+Y+yX45pr2nogORAhMhQgghmTsQfXxsB69GsqaahGY1EF9NTW3lypXr1q1TdCAtV3V1tbKysqKjQAg1LglFbxOLkla4+Ck6EOmaVSL8888/f/nlF/ncSygU1tTUtIQlXQQCAYvFUlH5pr/jGAzGN9ZECLUQQhDufHlwrpOvEpWh6Fika1aJkEwma2lpyedeQqGQTqcTi2U3bwKBgMlktoSUjxCShZspYRQSZYB5b0UH8kX4jhAhhJCsFDFL9r8+5t9tDgka0VIyEjARIoQQkpXtL/aNajesrZaVogOpCyZChBBCMnEjJTS3Kn+inbeiA/kKTIQIIYQa3vvS1APRx1b3+pVKpig6lq/ARIgQQqiBlbMrVj74e0m3eRaaZoqO5eswESKEEGpI1dyapffXDrYa0MfMRdGxfBNMhAghhBpMDZe59N7ajnodpneaqOhYvpVM5hHGx8fv2rVLvMTf3799+/YAcOfOnX379vH5/ClTpowePVoWd0cIIaQQedUFKx+s76Rvu8B5hqJj+Q4ySYSamprOzs7Ez2/fvt27d+/GjRsBICoqytvbe+/evSoqKjNmzNDQ0HBzc5NFAAghhOTsZW7030/+nWg3ZnS7xriydh1kkgjNzMxmzZpF/Lxo0aJRo0YRC74EBgbOnDlzwoQJAJCcnLxjxw5MhAgh1NRVc2v2vAp6kRu9qucSJ8NOig7nu8n2HSGHwzlz5sz06dOJw6ioKBeX/7877dmzZ1RUlEzvjhBCSKY4fM75N5cnhsyhkChHhu1silkQZL3W6KVLl9TU1AYMGEAc5ufna2trEz9ra2sXFBQIBAIyWUoyTkpKunnz5q1bt4hDOp1++PBhc3NzmUb7XYhFt4VCoaIDkTli0W2BQKDoQGSOz+dzOBw+n6/oQGSOx+NxuVwej6foQGSOy+Xy+Xwul6voQGSOw+EIhUIOhyO3O/KF/LAPj84kXWrTymq9y++t1U0ELH4lq1LW92Wz2SQSiU6nf2N9FRUVCuUrExllmwiDgoJ8fX1FqU5NTY3JZBI/M5lMFRUVqVkQACwsLIYMGbJgwQLikEQidejQ4asfRp6EQiGZTG4hi25TqdSWsOg2n89ns9ktYfcMIhG2hA2ziESopKSk6EBkjkiEDIY8tncQgjA843FQ7CldFZ11fVfY6trI4aYidDr9uxLht5BhIvzw4UN4ePjBgwdFJa1bt05LSyN+Tk1NraOHx2AwDA0NRSNuEEIINQZReTF7Xx2hkql+Xec4GzooOpyGIcNEePjw4YEDB4pnOx8fn6CgoJkzZ1Kp1MOHD/v4+Mju7gghhBpQJacqMOpQdH78fOef+5j1aMy7SXwvWQ2WEQgER48eFQ2TIUybNk1XV7ddu3a2trYVFRWLFi2S0d0RQgg1oKSS9zNv+qvQlI/+FNjXzKU5ZUGQaY/w9evXmpqa4iVKSko3btxITU3l8Xg2NnJ9rIwQQqh+Hn548s+zPb90m9uvdU9FxyITskqEdWwWb2XVqDemQgghJHIzJfRQzMl/Bv3ZpnHvKfgjZDtqFCGEUNMVnvk4KPb0Dre/TdWNFR2LDGEiRAghJEV0Qfz2F/tXOCx6cutxeWmpg6Nj165dFR2UTGAiRAghJKmIWbIuYotDltmiuUNHVVW14nB2aGmVtWlz/Pp10boozQYmQoQQQp8RCIV/R/7bkdwu5s+tj0tLiTwxu6joamnprNGjL96/r+D4GhruR4gQQugzR2JPk0nkpMB7f33MggRPPr8oMbGkpERhkckGJkKEEEKfvCtJuZZyZ2XPX7IyM9vWOmstFGZlZSkgLFnCRIgQQuj/BELB1me75zr6ailpGhkZZdaqkEkiGRoaKiAyWcJEiBBC6P8uJl1Vpim7WfYDgAkLF67X1BTfYSeCRKJZWOjr6ysqPBnBwTIIIYQAAIpqik/FX9wzeDOxgtrIMWNeR0S4njo1uaRESyB4qKHxzNj43KVLig6z4WEiRAghBABwKPaUZ9vBJupGopJ127e/nTMn9ObND3l5A/r02TJ06Jf2zmvSMBEihBCC1LKMp9kvTw3fJ1Hevn379u3bKyQkuWmGuR0hhND32vv6yBR7H1Va89+YujZMhAgh1NK9yovNqcwb3tZD0YEoBiZChBBq6YJiT/l2Gk8lUxQdiGJgIkQIoRYtKi+muKY0fPulLqamXfT1u5mb79u+nc/nKzou+cFEiBBCLdrR2DN55+PN9u1/np39srAwPDMzdfXq+RMnKjou+cFEiBBCLdervNiMog9dbibMZrOJfKACsLmqKv3eveTkZAUHJy+YCBFCqOU6mXBBJ5HkUVYhUe5RXv7s2TOFhCR/mAgRQqiFel+a9qEiW69IVVDrFJ9EIpFICohJETARIoRQC3Uq4eLYDl59hg67pqkpceq6unrPnj0VEpX8YSJECKGWKLcq/1Ve7DBrt588Pd+1a7dZRYUDAABlAHM0NJy8vCwtLRUcorxgIkQIoZbo/NvLnm0Hq9CUSSTSlUePSL/91tfCoquhoaeNTb9du7YcOKDoAOUH1xpFCKEWp4JTGZr+8OiwQOKQTqcvXbNm6Zo1io1KUbBHiBBCLU5w0vV+Zj11lLUUHUijgIkQIYRaFg6fcyX5pnf74YoOpLHARIgQQi3LzdQwW9325ppmig6kscBEiBBCLYhAKDj/5opPBy9FB9KIYCJECKEW5OGHJ62UNDrqdVB0II0IJkKEEGpBzr0J7qnifPHixcjISA6Ho+hwGgWcPoEQQi3Fzdi7b94llv913KG6OlxJabGa2rbjx/v066fouBQMEyFCCLUIAoFgw+WNPvfezy8sBACoqcktKRnm7X09JsbIyEjR0SkSPhpFCKEW4dKDKzQd2qzHWaISI4BFJSWnDh1SYFSNASZChBBqEW5kh3a4nUbjfbbVhB2fnxIbq6iQGglMhAgh1PzlVuXnkAuVXhRLlOcA6JmaKiSkxgMTIUIINX/n3lwebuMRBrRCsUI+wC4dnTG+vgoLq3HARIgQQs1cBbsyLOOhj93If06c8DA03EelPgE4BzBAT2/4kiWdOnVSdIAKhqNGEUKombuYdLV/6146yloDXV1DExNPBgWdjooytbE5PHFi27ZtFR2d4mEiRAih5qySU3X53Y19HluJQy0trYVLlig2pMYGH40ihFBzdvZNcF8zF2M1Q0UH0nhhjxAhhJohHo/3119/hUc8IU1Smt5qrKLDadSwR4gQQs1NdHS0ppr5xr9ysgy6Zj+wnjHmXye7nooOqvHCRIgQQs3NwL4jWexTZJ31Bn0zMkNWcwVRCW/MFsxbpOi4GilMhAgh1KykpKRUVasKoL/l+KPZtz05pdoAwBFuPn3ihqJDa6TwHSFCCDVhQqHwakjIo6tXBQJBr6FDR44enZSURAFT5bZvNdq8Tdq/+GNFsxpWjSIDbcQwESKEUFNVVVXlPXBg23fvRpSXkwGu/fdf4F9/BZ45IyBnWE85kHZ2moDD+Fg3WV1VVZGxNmLflAjfvHnz6tUrJyenDh1wU2OEEFIAoVB46siR66dOlZWWdurWbfEffxgbG//5yy/eMTHTP+6vO6Ci4mxi4u6AAOuRmgJmVcHTPh+v5tFJ8xf4TVZU8I2c9ETo4eHh5OT0999/A8D169e9vLx4PB6FQjly5MjkyfhVIoSQXHG5XK++fe0TE9dVVLQCeBwT43np0r/nz4ddv77x813mfXi8zXGRlqtdXv/+kAEeXBhBIRUC6YTboE5r1v6hqPgbOSmDZbhc7r1791xdXYnD1atXOzs7JyQkLFy4cNmyZVwuV74RIoRQS3d4z54esbGbKiraAugBeAkE1woLf5k6lcznUz6vKSSTVMdZ/uwwMef920PHJ0+Y+HSBX/nL15eu3bmkmNCbAik9wuLiYi6Xa2FhAQC5ubnR0dHnz5+3tbX9/ffft2/fnpmZaW1tLe8wEUKoBbtx5kxgzWdDXYwArFisFDq9EkBdrHyPTwchF7xshgHApEmTJk2aJN9ImyQpPUJlZWUAqK6uBoBr166RSKQBAwYAgLq6OgCUlZXJN0KEEGrpqquqNGsVthIKh40f/5u6Ov9jyd2eJld6mHgqDyCTSHKNr4mTkgg1NTUtLS137tyZlpZ24MCBbt266ejoAEBqaioAGBgYyDtGhBBqYTgcTkZGBo/HIw7tHB2ffp7bhACvAZauXm02f34vff2VGhp+nU0DpnTslNvmt99WKyLkJkz6hPrNmzcfP37cysoqNjZ27dq1ROGVK1cMDQ1NTEzkFx1CCLUweXl5E4cM6WtmtqR7927Gxn6+vpWVlYvWrFmlq5v2sQ4PYI2KSn8vL3V19d83bLgaH9/6+D9JS11+7/PrPxv2kLA7+J2kjxodM2ZM165d4+Li7O3tiZeFAGBvb3/48GH8ihFCSEbYbPaIXr0C0tLchEIAEAIcPXVqfFLStcjI3VevTpoyRau8XFsojBUKR/v6/rF+PXFVMiftBjd8bZ9l3c2cFRp+U/XFeYTm5ubm5ubiJZ6enrKPByGEWq6L584Nzc8nsiAAkAB8udywd++eP3/erXv3x0lJeXl5paWlbdq0odFoAMDhc/a9PvY469m6Xsvba+MWu/X0xUTI4/Hi4uI+fPjAZrPFy729vWUfFUIItURxkZGu1dUShX1KS2NjYrp16wYAhoaGhoaGACAQCu6khR+LO9tOp83hoTvoQBN+TJ/oe0lPhBEREdOmTUtJSal9Cr9rhBCSEWV19apahZU0mpGKCvGzQChILk0Nz3gclvHQSM1whcviTvp2AMD5fFo9+i7SE+HUqVMpFMrFixdtbW0ZDIbUOgghhH7Ek8jI7StXpqWl6Whrj5s7d8qMGe6jRv0bFORVUiKqwwMI1mm1ykE/KPZ0fOGbt8XJeio6vU27b+z/h1Ur8zoaR99OSiIsLS1NTU29ffu2u7u7/ANCCKGWIHDz5pubNm0qKbEDyM/I+OfXX73Pnr0QGqo7ePD0mzdXlJWp6igHd9a/1M1UuYPezdx7nfTtvNuPsNNrp0FX/3rr6HtISYR0Op1KpWpoaMg/GoQQagmKi4uPbd36pKSE+BVsCLClomJeVNT1a9f2nD594NLB+cmXWdqglkca22PkxH7j1Oi4cYQMSUmEqqqqPj4+p0+f7tGjh/wDQgihZi8yMnIIiyXx+3dcefmFy+dfab2NJyctGr3Iw8qVSqZIvx41KOnvCIcNG+bv75+dnT148GAtLS3xUzhqFCGEfhCbzVbh8yUK89ppv3GpaKesddJzD51CV0hgLZP0ROjv75+fn3/p0qVLlyQXLMdRowgh9IM6d+58WFV1udg62hHOhodmOPQWOC1wnqHAwFom6Ynw2bNn/Fp/rSCEEKqHFy9erJ0/Pz87G8hkl3791mzf3qZNG/0ePTaFhi5hMqkAoT1N/p1gW34i87e7uFmSAkhPhBJryiCEEKqfyxcu7JgzZ39JiQ0AAASfPev+4MGtqKgDFy5sWbPG6cgR43ataiZYmTykHLoYpvJxviCSpy+uLAMAb9++jY6OzsrKMjIysre3d3BwkFtYCCHUDAiFwnX+/vdKSlp9LBnJ5wtyczevXLn14MFVGzdO+X3BgtvL1vf+zXkO/oJVGOmJkMlk+vr6njt3TrzQzc3t3LlzEmNnEEIIfUl2drYpl9vq88Kf+Px/7t8HgBouc0V4wFzn6c5GmAUVSfo2TEuWLPnvv/+WLVv2+vXrvLy8uLi49evXP3nyxNfXV87xIYRQ0yUQCCi1duwhAwgEAgDYGXXQ0aDjEKtBiggNfSKlR8jhcI4dO7Zhw4Zff/2VKDEwMLC3t7e0tJw4cWJBQYG+vr58g0QIoSbJ1NQ0jUyuBhCfD3+HROrWu/ejD09i8uMPD92hsODQR1J6hEVFRTU1NR4eHhLlHh4eQqEwIyNDLoEhhFCTRyaTlwYEjNXSyvlYEk4irTY0nL12xT/P967pvVSFpqzI+BAASO0RtmrVikqlErvyipfHxcUBgJ6enpxCQwihpm/i9On6pqYT/Pyqi4uBQmnn4HB5//4TWf95WA1sr4M7CDYKUhKhiorKkCFDFi5cqKSkNGLECDKZDABhYWEzZ850dnYWbViPEEJIQmZmJjEPu2vXrtbW1kShm7u7W2KiqE50QXxMQcKxnwIVFCOSJH3U6N69e93d3UeNGsVgMAwNDQsKCphMppmZ2YkTJ769aSaTee3atczMTGtraw8PDyUlpdLS0tDQUFEFZ2dnKyurH/0ECCHUCAiFwlWLFj06d25YVRVFKDysrt7O3X370aNU6me/ZrkC3j/Pdvt1naVMVVJUqEiC9ERoYmLy6tWrCxcuPHz4sKysTF1d3cXFZdy4cWpqat/Ybm5u7oABA0xMTDp37vzgwYPWrVs7OTmlpaX5+voOHTqUqKOtrY2JECHUPOzZtq3m2LEHlZXEINFfWay/goPXGxqu2bpVvFrwu+sm6kY9TbopJEgk1Rcn1DMYjEmTJk2aNKl+7fr7+/ft2/fAgQMS5Xp6eufPn69fmwgh1Gid3LPn7scsSFhRU9P19GnxRFjJqTqdcPFf1/XyDw/Voa6VZeqNz+cHBwc/efLk7t27HA6nb9++6ur/30mSzWafP39eTU3NxcUF5+YjhJoNbk2NxBMzKoASj8flcmk0GlESFHt6gHlvS83W8g8P1eFTIrxw4cKSJUuWL18+b948Z2fnwsJCqRdkZmZ+tdGsrCwOh7NgwQIbG5vi4uJ58+Y9fPjQ3NycRCKZmppev349PT09ISEhODi4T58+UlsoKCiIiopav/7/fzeRSKTp06c3qsQpFArZbLbo33czJhAI2Gy2xHuOZonP57PZbAql+e8Ax+PxuFwuMQ6ueeNyuXw+n1RrSrtM0GgcAPHNk4QA1SQS8f8gAMipygtNe3DYYztx2LA4HE4L2RqIzWaTSKRv/7B0Ov2r/wA+/XYzMzPz9PRs06YNALi7u1dUVNQ7UB6PBwBjx4718/MDgIkTJ27atGnPnj2Ojo7Pnz8n6qxfv37BggUxMTFSWyDSTFlZGXFIo9FayH9jhFATNczbO3DPnl9YLFHJCRqtj6ur6PBYwtnRbX/SpGsoIjpUl+/Iq9+upqZGVVU1MjLSxcUFAHbu3HnlypWwsDDxOjExMV27diVye+0WNm7cWF5evmHDhgaPraEIhcLq6upvHz3UdAkEAiaTqaqq+vWqTRzRI2wJy/8TPUJl5eY/lZvoESopyWN8JpvNnvLTT/RXr0aWlNAArrVq9aFdu/OhocRviZSy9F/vrTnluU9GM+iJHiGDwZBF440KkTXo9IbcuFgmz7tUVFT69euXkJBAJML4+HhLS0sAEAqForT3+PFjS0tLOT2yQAihBnXj6tWrx4+XFBZ27NFj7tKlOjo6DAbj3N27jx49enT7No/DGePm5ubmJqq///WxKfZjcR2ZxulTIkxNTX3y5MlXL5g4ceK3tLt27dqxY8emp6eXlJRcuXIlIiICAFatWpWcnNy2bdv09PSQkJCTJ0/WO26EEFIIgUAwadgw1WfPZpWWagNEPn7sdvTonuDgHi4uANCnT5/aQx/iChMzK7LW91upiHjR131KhA8ePJg+ffpXL/jGRNi/f/+IiIjr169bWFj8+eefxMJs8+bNu3//fnZ29sCBAzds2NC6NQ6dQgg1MaePHTN+/HhrZSVxaM3jDcjPHzl+/PO0tC894joUc2pqx3E0cvMfcdZEffoP4+PjI96R/3E2NjY2NjbiJSYmJvWemIgQQo1ByLFjAR+zIMEUwJrJfPfuXbt27WrXf5kbXVRT7G7ZX07xoe/3KRGqqKi0hGECCCH0IyrKy3VqFerw+aJR7hIOx56a7jCRQmr+03KaruY/kQghhBpQu44do2oVRpPJbdtK2UoiMvs5k8ca0Lq3HAJD9fapR3j58uVVq1Z99YL4+HhZxoMQQo3avJUrp9y8aV9UZAwAAEKAnQyGXb9+2traEjWFIAyKOT3DYRIZh8c3bp8SoY6OjqOjowJDQQihxq9du3ZbLlzw8vW1rqnR4/Ofk8k9PT137t5du+aDzEgyidzLFNfXbuw+JUKpo34RQqglu33z5tGtWz98+GDdps3c1auJORJ9+/d/8v59ampqUVHRX7a2mpqatS8UCAVBsacXOP9MAuwONnY4nBchhKT7Zfr0gsuXV5eWWgEkJievfvZswKJFv65ZAwAUCqVt27ZS3wsSbqfe02RodDNykmO8qJ4+JcIPHz5ER0d36NChTZs2d+7c+dKysJ6envKKDSGEFObly5epISGXS0uJQyeAkJKSfoGBPtOnm5mZ1X0tm88Jij29pvdvsg8TNYBPiTA0NHT69Ol///33ihUrJk+eXFBQIPUCXPwaIdQS3Ll8eWJxsXgJBcC7vPxeWNjUadPqvvZ0wn+d9O3s9drLMD7UcD4lwlGjRnXv3t3AwAAAHj16ROwggRBCLROzokK9VqE6j1f9+Wz62oqYJZfeXTs05F8ZBYYa3KdEqKmpKXrlK7EiDEIItTT2Li6PjxzxqKoSL4zQ0pr+tdH1h6JPDG8z2EBVX5bRoYaEE+oRQkiKkaNH3zUwuCM2BfAUlZptadmrV686rnpfmvYs99UEuzGyDxA1GOmJsKamZsOGDS4uLsbGxtqfk3N8CCEkB8nJyYunTPFwdJw2dOj1kBAAoNPplyMijrq7u+jpTdDX76Kn99jb+3xYWN2bx+15FTSt4zhVGi5X2ZRInz7h6+t78eLFQYMGjRkzBhcgRQg1b+dPntzp7/9nUZEDQG509L9Pn17q3//wpUuGhoanb91iMplZWVnm5uZf3Qw2IutZMbPkpzbu8gkbNRQpibC6uvq///7bsWPHggUL5B8QQgjJU3V19YYlSyKKilQBAEAXIKi0dPr9+7dv3Rrs4QEAysrKdcwX/NQOt2bHi/0re/2C62s3OVIejXK5XD6f37NnT/lHgxBCchYZGenK4ah+XuhbVnbj1Knvamd31OFept0769s3YGxIPqQkwlatWvXq1Ss8PFzuwSCEkLxVV1drcrkShZoAlV/YVkmql7nRUXkxszpPadDQkJxIf0d4/Pjx0aNHM5lMNzc3XV1d8VNWVlZyCQwhhOTB1tb2sIoKVFeLFz6lUu169PjGFoqYJRue7vjdxU+FpiyDAJHMfXGtUTU1tVWrVtXemAlXlkEINSc2NjYMe/tDEREzPvYLYwD26umFzZ37LZfzBPw/I7Z4tR3ibOggyzCRDElPhKNGjcrJyVm3bp21tTWNRpNzTAghJCPJycmTfWYkvcui0ahu7t2PnDhEp9OPhoSsnD+/y40bnUikbDJZaGx85vTpb5wtFhh1SJ2uOsneW9aRI9mRkggLCwtjYmKCg4O9vLzkHxBCCMnIuXPnJk9YIhBs4IMbQPXF8/uuhFilZrzS19ffcewYk8lMTk42MTHR0dH5xgYPRh+PK3yz0+1v3GupSZOSCFVUVCgUipGRkfyjQQgh2Zk+9Veu4D7A/+dCcGCLgGU81mtSeOQdAFBWVu7UqdO3t3Yw5sTTnKh/BwXg9PmmTsqoUVVV1XHjxp08eVL+0SCEkIykpaXxuFqiLEjgwaznLxO/t6kKTuWqhxte5kZvG/SXBqP20tyoiZH+jrBPnz4rV65MTk52d3dXU1MTPzVr1iy5BIYQQg2poKCABBq1ilX4AsG3NyIQCu5nPt7/+lj/1j3X9F5KI+Pe5s2B9P+Ka9asKS4uvn379u3btyVOYSJECDVFDg4OfEgD4H3+e++1tmbt7CiJL+QnFb9/nR937f0dHWXt5T0WORl+x0NU1MhJT4RJSUmC7/krCSGEGjklJaXePewjI2dzYC8AsWporpLqtFk7Jm99trugpqigurCgpohMIgOACk2FQiIDAJVMqeRUV7ArLVuZdzaw+72nf0e9Dgr9HKjhfZYI79+/3717dxUVFdHGhAgh1GyEPbo5zN0r9L4lFTpStZjGnmyzQW24ZsI2Wpa9TLsbqurpqegKQQgANdwavlAAAFw+V52upqmkgSuINmOfJcKff/45Pz/fzc1txIgRP/30k56enqLCQgihH8disdhstpKSEnFIJpNvhobU1NTsuL33EevF8PYePh1GailJ+btfna5WuxA1V5+NGo2Kijp69KiGhoa/v7+hoWGXLl3Wrl375s0bRQWHEEL1E/n4cX9b26Ft2oyxs3Oxtia2GAQALp+75dXuVKWsPUO3zHGcJjULopbms0SopaXl7e19/PjxoqKiBw8e9OrV6/Dhw7a2ttbW1osXL46IiMAXhwihxu9JZOSyESOOvnnzqKAgvKDgcmrqnmnTgs+fr+bW/Hp/rRCEe9w3W2iaKTpM1FhI36GeSqX27t17x44dmZmZz58/Hzdu3L179/r06WNqajp79uyYmBg5R4kQQt8uwM/vcHGxxcdDA4ATpaWbfl/++4P15hqmf/RaSqPgypHoE+mJUIREInXt2nX9+vVxcXFpaWlr167NyckJ+fiQASGEGqH8rCybz0u0SEDzCzYDeQAAIABJREFUNFSmMPy6ziaTcDk09JnvmA1qYWExa9asWbNm4QNShFBjJiCRhPDZ6p8Hx3YQajPW9FpKzI5ASFx9/k2QyfgvCSHUeDl26xYq1u175qB/s6eJ2q0qZTruF4ikwJSGEGpu/ty1a5mx8RkajQVQoMlYN8Mh61z6ln1Bio4LNVKYCBFCzY2pqem9+PiYGTMGtW07+tdeqoWaIRcfduzYUdFxoUYKEyFCqAljsVgbVq7sbWPT1cxsVJ8+z58/J8pbtWq1cc+eX67807GL09m153FfOVQHXDodIdRUsVgsV0dHn4yMUCZTCSAxK2vRkCHTNm2aNGMGABQxS04knt/UZw0OE0V1wx4hQqipOrR7t1dGxkImk1hCzRYgpKRky8qVHA4HALY93zOyzTBzDVPFBokaP0yECKGmKvzKlVFMpniJCkB3gSA2NjYs41F+deHY9l6Kig01IZgIEUJNFZfDodcqZAiFVezqva+OLOoyi0rGLSPQ12EiRAg1Vc79+oVRPxvoIAB4QiZHU950MersoG+nqMBQ04KJECHUVM3/7bcdBgbhH8fCVAHMU1d3nTPhXlbETIfJio0NNSGYCBFCTUN0dPQvvr6jevVaOnPm27dvAUBHRyfk6dP9bm5dDQz66esPMDPrtnkzp5/6tI7jdZS1FB0vajJw+gRCqAnYunbt3cDAZcXFbQASIyNnX748afXqmYsWmZqanrl9WygUMplMFRWV8MzHD2PjR9h4KDpe1JRgjxAh1NglJSXd2L37RnHxQIDWAB4Ad4uKggICcnJyiAokEklFRYXN5+x7fdSv62wKCcfIoO+AiRAh1NjdCA6eWlIintzoAOPKyu7cvi1e7XTCf7Y6Np0NcCk19H0wESKEGrvywkKdWru/6XC5ZYWFosO86oLgd9fnOPnKNzTUHGAiRAg1du2dnaNUVSUKX7Zq1cHBQXS46+XBse1H6Kvoyjc01BxgIkQINXYjRo68qqv7XKzkPon0Ql9/0KBBxOGL3Ndp5Zk+HXAdGVQfOGoUIdTYKSsrX7h/f56PDzkjow2f/4ZCUe/Q4cLp01QqFQA4fM6/L/b5dZ1No9AUHSlqkjARIoQanRcvXiQmJhoZGfXs2VNNTQ0ALC0tbz5/npWVlZGRYW1tbWhoKKp8MuFCGy3LbkZOiosXNW2YCBFCjUhWVpavp6dxVlaXsrK3qqrLVVT+3LXLc/Ro4qypqamp6We7SaSWZVx+dzNo6A5FBIuaCUyECKHGQigUThg8eNObNy5CIQBAefny8vLBc+a069jRxsamdn2BULj12e5ZnafoqujIO1bUjOBgGYRQYxEXF2daWPj/LAgAAJoAK4qLjwcGSq1/4e0VOoU2rI2bvAJEzRMmQoRQY5GRkdGOxZIobC8Upr15U7vyu5KUM4n/LeuxiAS4AT36IZgIEUKNhb6+fhaDIVH4AcDAzEyikMVj/fV460LnmUZqBvKKDjVbmAgRQo1Fly5dXikrp4uV8AH+0dYeN2eORM1/nu/ppG83yKKvHKNDzRYmQoRQY0GhUA4GB482Nd3EYIQCnCCR+uvpDfb379atm3i14/HnMiqyFjrPVFScqJnBUaMIIYUpLi6OjY1VU1Ozs7NTUVEBACdn54h3786fPRv67JmhpeUxb28rKyvxS8IyHt1MCdvtvkmJKvkQFaH6wUSIEFIAHo+3evHi+xcu9OXxKimUZ1TqkvXrJ06fDgDKyspTfX3BV8ry2TdTQg/GnNjuul4b991FDQcTIUJIAdb88ovS0aNPamqIEZ/VAGN//VXf1NTN3V1qfSEIT8Sfv5kStsP1bzMNE3mGipo9TIQIIZnLry589OHp6/zYgpqiSk4Vg0x/r5swaqz1jfTyjkklrXOrVAF2lpb6//GH1ESYWZH9z7PdPCFvt/sm7AuiBoeJECEkQzlVeftfH3udH9fLtJu75QBDNX11ulpWbtbaTRPM1fjR7XWOednwKSTHxOLOb4vyqku5Ah6N/P/fSyweO7Yw4VbqvajcmKkdx3nZDCWTcMoganiYCBFCMiEE4dnE4NOJ/41tP+L3nv4MCl10StNYvexd2ZiP2+rm6KtEd9B92UFH2UZv2PlxrZQ0KSQKX8gvZZW30bJ0t+zv33WOOl1NQZ8DNX+YCBFCDY/FY296ujO3Kj9o6A69WpvlqqqqaltZPSss7A4AAMYFNcYFmfHPCz2Xey1e/HsJs4Qn4JNJZANVfewCIjnARIgQamBMHmvpvTXG6kY73f6mU+gAEB8fHxEezmYyu/Xu7eLiAgCBZ8969+/vU1DgymTWAJxq1SrL3v78smU0MtVAVV/RnwC1LJgIEUINic3n/P4gwFTD5LfuC8kkkkAgWDRlStrt26NKStSEwt3a2pvt7E7euGFhYRGRlBS0b1/gvXsqamqDx4wZPnKkomNHLRQmQoRQgxGCcF3EFl1lHSILAkDgli3qV65cr6oiKkwqLj769Omy2bMDT55kMBhzFy+GxYsVGjJCuMQaQqjhnIq/WMIq+63HQtG7vbMHD/7+MQsSpnE4EXfvCsX2WkJIsTARIoQaxuv8uOB31//qs1w0/wEAOEymeq2a2gCVlZXyjA2hOmAiRAg1gBJmaUDkthUufhKbxSupqlZ8XlMIUAygrl47PyKkGLJNhDk5OW/fvuVyueKFWVlZaWlpMr0vQkieeAL+mojNo9v91MWos8SpCXPm/Pl5zjvIYAwYMoSE8yJQoyGrwTJ5eXk+Pj7x8fEGBgalpaW5ubkAwOFwxo4d+/LlSzqdbm5uHhISgn8VItQMHIk9pUZTHW87qvapOX5+SxMS3K5eHV1aShMIbmlpUZycjuzdK/8gEfoSWfUIx40bZ29vX1BQkJiYmJCQQBQeO3bsw4cPKSkpycnJVCp1165dMro7QkhuEoveXU8J/a3HAi6Hu3Xduv4dOnQxM/Pu3//FixcAQCaT/zl8eHdEBHX3bs727ctv3z57546ysrKio0boE5n0COPj41++fHnt2jUOh8NgMLS1tYnyM2fOTJs2jcFgAMDMmTP/+uuv33//XRYBIITkg8vnbn6606/rbFWyinuXLp4pKddqatQA4rOy/Dw8pmzYMGXWLACwsbGxsbFRdLAISSeTHuHbt2/NzMwmTpxoZ2enq6u7efNmojw9Pb1NmzbEz23atElPT/9SCxwOJy8vL+qjV69eCQQCWYSKEPoRB6KPW2lZ9G/d68j+/e4pKUtqaoglQe0BrpaUbFu9msViKThEhL5GJj3C4uLit2/fLlu27MqVKykpKU5OTr169erVq1f1/9q7z7gmkjYA4JOEEBJ6qKFJk6J0ECtFFEFRsYMeKFix61mwnV1Q7BWVs2PFyqECAlZAQbCAotIUREogoSSk774f9swbkbMC0TD/nx+ys7O7z4DwMLuzM2y2goICVodCoTQ3N4tEIgKB8PkZSkpKEhMTnz17hm3icLiTJ0926dKlPaL9MSiKNjc3SzuKjoAgCJfL7QxvfYlEIh6P1xn+5BIKhQKBQCQS/eR5ChiFt97e3d9/M4vFSrl4ceOnPxFkAPoIhZmZmT169PjJC/0wrJlCoVBaAXQYPp+PomiLkYkyicfj4XA4eXn5r1cFAABAoVDw+K90+dolEerq6hKJxODgYACAmZmZp6fnvXv3+vbtiw2cwerU1dVpaWm1mgUBAFZWVjQaLTIysj3CaxMoiuJwOCUl2Z8RH0EQAoGgqKgo7UDanUgkIhKJFApF2oG0OywR/uSDOq6Qu/PpwSU95+hT9QAAiEik8FkdBRTF4/FS/DHBEqH4728ZhiVC7MGTbCMSid+VCL9Fu9wadXBwQFGUzWZjm/X19djoUEdHx4cPH2KFDx8+dHJyao+rQxDU3p49exa0Nbg2u/TSX9H5+fkAACcPjzS5T/6wRgF4QCDY2dlJKUYI+lbt0iPs0qXLiBEjZs6cuWjRogcPHjx//vzs2bMAgNmzZw8aNKhnz56KiopRUVHHjh1rj6tDENSudm7YcP3mcfJ4s72b7pSzBfP++Wd0ePjMRYsGnjhh+uGDB4oCAJoBWK6s7B0YqK4OF5SHfnXt9frEsWPHDA0NFy1a9OTJk4yMDD09PQCAq6vr6dOnjx07tmvXrt27dw8ZMqSdrg5BUDspKiq6FnOAGmD619/PLNmCgQAk1dWdjYpisVjXMjOjBwxw1dHx0tFx09e3Xr9+w+7d0o4Xgr6uvV6oV1JS2rx58+flfn5+fn5+7XRRCILa2834eNOhenZPql2f12AlRAAm1NcnXr8+febMc7duIQjCZrPhXBnQbwTONQpB0JcwmcyHDx+WlpZiI4eLeaW1XdVnnC+QrKMhFDbU1mKf8Xg8zILQ7wWuRwhBUOtYLNaSadOepaY6IUgVgVCpqrruRPSbLjXmUa/I3E9eSHisouLh6CitOCHoJ8FECEFQ60L9/f3u34/++GraG2bt5LsRf7j9cawxOwOAPh+r3cXhHmhrR/j4SCtOCPpJMBFCENSKt2/fsvLyQiRe0L4SYmtV0VB95eXFO3dmBwYKiostRaICAkHR0jLuzBkikSjFaCHoZ8BECEHQv2pqaigUCvb+++vXr534fPGuS4NMXpuoLVn3YG0vJSMjo38yMiorK0tLS83MzHR0dKQXMgS1AThYBoIgEL5kmQLRwIDWn6rqpELpcubMGRUVlbqPL8g/tdaI9e+6aWd2E0+k+nEOfRqN1qdPH5gFIRkAe4QQJDuY3Ibb7x48/PC4vLGigdeoIEfSIFO7aVo66dj10nchEVqflWpayIwTJ4sE6DMANAAAAs6rScFDY89seigvXwcA3VRt7Vzn1ftyafTmv9TURk6e3LFtgqB2BxMhBMkCtqD5ZN75GyUpffVd/cy8u1JNVUkqHCG3hl2bX1sQX5QY9Wivp1HfUZZDzdSMWxx7IjZegBYCIJ4R1EqInJs/64+TsUeGbJxLDTILO/xM8LL2DypVeeBAv6FDO7ZlENTuYCKEoN/es5oXERk7XWgOx/z2apKp4nJFIkWTTO2maTHOyp/JrU8oSg6/vV5bQdOS30VPoN27V28DA4PS0lIcqiORBTEuzEYW05inu7C38TPFk4psnbHuU2bM8BowoIObBkEdACZCCPq9JRQlHX1+Zmmvub30XL5QTV1BLdhmHCOh6Nzt2PJ+WgIV0v6lEVbK3Vf9tRkFvBaVVS3zTcdb3i/PPDx4u84Y7fYMH4KkDyZCCPqNncw/n1iSttd7s74y7auVL5w5k7Vl6736emJywWsTtZvuhtcda2dcX2Aeql7/NlbIMsETeRT9cqp9Dl6eIXwo2LN6Mx6H64BWQJB0wUQIQb+rC6+upby9t39QlLqC6n/VEQqFch8Hfx7evDm2vh573c+ytN6ytH52bH7vHqZDpgUk4A7iyT1RoR6nSqf0hAGr5OKTpykwC0KdBEyEEPRbSi69c/FV/F7vyFazYE1NzarZs3MePJBHEJGCwswVK0KmT69nMHQ/rUYUoRqlrBUjFo2wGBwUMLOqhoHD4W2sja+WZuvr63dMQyBI6mAihKDfT07Vs+gnx3YPjNBRbOUBXlNT0xBX1zXv3x8WiQAATQAsXbKk5OVLeQUFNgCKn1auQxBlZeV+/fq9rcjrkNgh6JcDX6iHoN9MNbtmU8aONX0XG6m03mmL2bs3tLJymEiEbSoDcKCpKfnsWZ9Ro/aSyZI1k/B4C0dHODsa1MnBHiEE/U54Iv6qe5HBNuMcdGyxkqqqqnMnT77Nzze2sQkIDqbRaNmpqeskZkcDAOAA8BAKew8c+Hdubkhu7ngmkwRAsrLyPX39y6dOSaMdEPQLgYkQgn4n2x7tM1M3GWnx7+rWF8+ciVq4MKy2dgyCFOLx/tu3L962jUAgCD87UIDDkUikCykpaWlpty5e5DY39/b13ThuHB4PbwtBnR1MhBD020goSipklh702YZtVlVVbVmw4A6djj3264cgATU1nosWjVuw4OqDB904HPGBAgDuEggbnJ0BAF5eXu7u7gKBgPzpbVII6rTgH4MQ9Hs4nXB66+29L1dedzezWDVvHpvNvpGQENTQIDn4hQLApPp6RWXlmyYm+xQUsNuj7wAYra4+delSbFkJCIJagIkQgn4DOzZvPFp4fM7xp1nPSh+WlRkfPjzQyanq3Tu9T58FAgD0BAJGZWXy48f18+d7mJj00NOb4ei4IC5u1uLFUokcgn598NYoBP1yHj16lJ2RIa+g4N6/v5WVFYvFulh9Y2Qje2xGBQAAD8BUHq++rKzg3TuBoiJgsyWPfUmhmNrYkMnkVZs3r9q8WUotgKDfCUyEEPQLYbPZwX5+5Px8bwaDj8fPp1K7+fkZjHVS1iPPO5AlWXM4l5tVVnZNTS2Qzbb8WFgIwCV19fv+/h0fOQT9vmAihCBpqqqqam5uNjY2xkZvLpk2zT8zcxJ2w1Mkmk6nh2Un3fRgdj3yisQXSR6IPdU4mZg4edQoawajG4tVoKT0Ql39+KVLioqKn18IgqD/AhMhBElHWkrKsmnTdDgcCgAFKDpr+fLp8+ZlpKQckHjs16hEZE7pxrlanlXHRz59pH+TROrt42NjY3P/1avHjx8XFxf3MzNzdnYmEAgd3xYI+q3BRAhBPw5BUbaADQAg4AgU4ne8jfAwM3NdYOC1ujpszQgOAHPXrGlsaNCUeKsPwePWznUZ+LDiUHbj6KlTJ0dH72xoUAcAAHBRTu4kjXZ77lwAAB6Pd3V1dXV1bcN2QVCnAhMhBH03BEUfvH94rywzqzIXQREAgAARaFE0u2taDjT2cKE54MAn6zZUVFQk3rhR8+6dtYuLn58fkUjcGh6+/2MWBACQAdjf2Njz4EGAIOKjdk20IYiQMRdfnzTvuiIy8nz37kPWrBGwWDg5uV5eXom7dsHXISCoTcBECEHf53nNi325R+RwcoPNBsxwnKhF0QQAICj6rqHsWc2Lw09P7so+NM7a389skByeAAA4vGvX0YiIiUympVCYpaQUoal54saNd6WlNp+elgSAHorqubkdS0gI5fNPjLAoMFffvTFjpaJS0KxZAICAoKCAoCApNBiCZB1MhBD0rUSo6GDu8bvlmWGOk/p36SfZ7cPjcCZqXUzUuoywGJLz/umZN5fjXsVPsw9WrJGP27DhPoOBTWs9isUKZrFChg4lyMnxACB9ev5GFD0eHT2LybyiVI246XpHPPJXVrcbNmz6vHkd2UwI6mxgIoSgb9LIb1p7P4qAJxwZsktZvpV7khwOZ/PKlfFnzyojSCMO1yt0yHHcWfrbD5MpAiLj/9WsAbBuapIfMOBcRcUkgUBcXgCAgq6utrb2iD0zL79M6FVtRdk4dr+Xl4WFRQe0DoI6M5gIIejrmNyGhSkre+o5z3CchMe1Ph9TgLf3oMePH/N4BAAQAI7sOH3hlg2lp+aZ5b1rHn0IvfxahfVv2jPmcruNHLn7yZOa8vLxzc2KACTJyW3R1Dx26sTO7IP59IKYYbs0yOod2D4I6tTgFGsQ9BUNvMY/U1d5GPWd6RSKZcG01NRBjo4ueno9jY1XzZvHYrEePHhAffVqDo+HvbuAB2Aan29ZXEIpwU8Ov43gcX9sG7AvqHu1JhkAUKigYGVldfv5c9Jff83p1SvAzi5/5sy996/sKIthcuv3eEfCLAhBHQn2CCHoS9iC5j9TV/cz6BVqNx4rObRz5/UNG44wmYYAiAA4fvjwwJs3R4eGDqira3HswPr6VH39nSSVpON5QfGFl3xMp250N8ujl5Xju1gYy8vLz1u2LHhBWB694HrRrZ15h+a7THc37N3hTYSgzg4mQgj6TyJUNOnkzNri2vLMN7hg3uTJkzkcTnRkZBaTKQ8AAIAAwBQer+n9+8xHj7zxeMmXHwAAPAAMDAx6R0W5rVgxurFR71yB/p2aXG9z+xnu4+On80Q8eYI8EU+0oJoNMvFcb7SMRJCXSjMhqJODiRCCWldRUTFo7Tg5qnbe9lBUhNy9e3jNiq2x5w/2RtEW+cqfy73x/v0VKnVqba1k+UUNjSVDhri6uvr4+6elpVWVlwc4Onp4eGCzqQkQIV/EVyRSOrBNEAS1AiZCCGrdkEUBFCeTp+sOoyIKAICPjquuWblk4SpXFG1RkwCAIolk5Oc37erVjQ0NOgDUAbBORUXV0xOb8EVDQ2Ps2LEtjiLi5Yh4+AMIQdIHB8tAEAAAIAhSXFycn5/P4/EAAA8rHpP7Kudv3SFs/n+PTYCuep5XmoHHiz49NpFI7OXtvfv4cZ+DB4Ps7HoYGATY2vbasycmLq5jGwFB0I+Af5BCEEhMSFg1a5YZj0dB0ScADF0Q8rxrxZu91dxa7U8rkhEEFzBjxuS9e3d9nPYznkA4RKPdXrQIADAmMHBMYGDHxw9B0M+AiRD6DTA4zDx6QUn9O76IryCnYEE1665lqSKv3CYnz0hP3zJpUiKDoQkAAKBKXSFY+Wm3YoubxVUAtFjyoUGOgIZv2HDe0nLImjUIiyUiEFzc3G7u3auiotImwUAQ1PFgIoR+aQV1b06/uPSsOt9W29pMzUSZpMQWNF96/c+mjB3OuvbjrP27a1p91wkLCwuvnT9fVVpq5eo6PihIUVFx58qVez5mQY6C3F+LXEOSS7dmPbO1Nst7ESkEKz8eihJx80aO9AIfp/1EEASPhw8XIOi3BxMh9ItiC5oP5B59WPF4om3Ayj4LyXIKLfamvr235n6UC81hhsMkdQXVbznn9nXr4vftC6utdQEgJzbWbf36g5cvl5aU2AIAAEDwuPWznCxK6/9IKLqgo7PtyolBniM/VMWLkLE4wMHhzznYapw6e0d8NpgFIUg2wEQI/YqK69+uvrfZheZwctiBVl8wUCRShnf1HWjscTzvbEjCnBC7QP+ug/9r8jPMo0eP0vbsuc1gYJU8+fxxHz74jxmjoKDABkARgP1/dOPL4xcezwcA1KOotrZ2aUV+YmLilStXyWSFwMAjvXr1apfWQhAkVTARQr+crA+5EZk75zpPG2Ds/uWaFCJ5ltPkwWYDd2UfulGcsrz3AlO1LgAAFEVPxMTEbN3KY7OJZPIfYWFhCxdeOHx4wccsiDEEoCeHg+vf/1h5ucpgo5zuWvvXp8uJkHwA5Gk0VVVVAICvr6+vr287thaCIGmDiRD6taS9u7835+9NHiu//eGfiarRetelD2qy/kxdFWA9MsB65MzAQMrNm4lNTcoAcADYsm5dYGIihUjU/+xYfS63q5/fIcV3JHPiug0P6poFF4jEPZqaZ86ebdt2QRD0y4KJEPqFpL/P2pfz9w6v9SZqXb6lPoqih/fsORQVpS4SsVBUr0e32zMe3Hpzp/pp+vWmJqwOGYC1bHbo06c4L68CHK7bp6/DFygpCtXeGvjZ9K602t0Dx2axXL287ixdinUHIQjqDGAihH4VT6vztj7au8VzzReyYENDA4FAUFL6dznAtYsWMf/++0FTE/YUMfMGfdaTN71WjBYusLlyhTg87R1B9G/aG85g3NfU3KKh4VVbK17ZIUlZ/v1sWx051v7+W5TllaZPnsXj8SgUOOcZBHUuMBFCLTXym8obKyqaKhWJirpK2vqKuh1w0dd1RWsfRK3tt9RSw7zVCglXr25YuFCJwxGhqFBNbdPBg04uLgmnTmU3NYkf+/VG0aXV1acv5Q968/hBcPerA42nn3/V+2k1HkEJAKgqKa0/dmzAjBlezc36nOa7A83r/U38LActcptNwBE6oI0QBP2aYCKE/oWgaGZF9rXCmy9qXxkq6+sr05oFzZWs6joOs49ejxFWQ6w12mup9HcN5cvvbljSc66Djm2rFS6fP3905swEJlMLAABAWU1N8Nixf2za1BNFW4wT9RKJ9ldVZfJIFzc/zHTQOTmy684QW9/75XeqBX5ePaz62O/LuJL47FZqU74mhRrl8acF1aydGgVB0O8CJkIIAADeNpRvebgHRdFRln4b3ZfLS6wHVMOi3yxKXXM/yknHdpbTZBVS28znIlbNrllye22YY0hfA1cAwIcPH1bNmvU8OxsgiLqOzpq9e/u5uW1Zvvwmk0n9eIgRAEfr6ibu3m352Zt8HAC01NRIxsbr7t1b9rS699PqIgPlKPculd5GCYK0xPt3NcjUrgamu0wmmKubtG1DIAj6TcFECIHzBVfPvLg0xf6PYV19cADXYq8mRWNM12HjbEYceRYbcn3OTKdQb2PPtrp0HYe5MPWvQOtRg0z6AwAqKiqGubpuqao6iiAAgNKqqmkjRkzfswfHZlM/PdAMAG59fQ4ezwJASaI8jkweMHr0jHnz9m3d2jc6Gsfjoai8v8GQ3YvWksnktgobgiBZAhNhpyZERNuz9hcz38YM2alN0fxCTbKcwhznqd7Gnlsf7UsuubO893wqWf0L9b9Fdv7jtdlRKm9BVWlRg26Dqqpq1IoV6yorvT8O7DQB4BKD0T88HPfZykcoACgAK7dt85s/fxeD4QAAG4BDFMo/JibJs2cTicSFK1YsXLHiJyOEIKgzgHNEdV4cIXfp7bVNfNYe74j/yoI8Hu/Jkyfp6ekMBgMAYKlhfmjwdmOK4chTk7o422upWg71HdnY2Pgtl+NyuZKbketXLb4ebn3j+dz1cciSJf2trO7fvfvo/n3fT3OeKgAGQiFVXz/v07Ol4HCOPXuOCwranZoaNWCAq6HhMGtrNDw8JTdXQUEBQBAEfTPYI5QavoifWfH40Yec0oYyFp+lRdE0VNG31+7uZti7A9ZrbRZwlt5eZ6xq+KfrLDyu5e1QzNW4uA0LFjgLBEpC4Ro5uT7Dh2+Ojs7JyfnT7S/V7lPNpiuXxw9KTv6grWmZ+zS1W7duLBbraHR0Xno6VUdnSGCgR//+AAAej7d9/fq4Y8eURCIWDjdw+PC/tm3Le5WfTEgfm0efc/E1AKCPQDCmqmrwhAnyJFL3wfL6AAAgAElEQVSrkazYsWPi+PFra2t9RSIRAFeIxO06Ov/s2wcAcHBwOJuS0m5fJwiCZB9MhFKAoOjVNzdO5Z8nc0mKZYixprmv1wSUgnvX+P568a3tmQdI+RxuSoWFZbeZK1ZYWlpiRz1+/PjWtWv11dUOHh5jxo0jEolYeVFRUXZ2Ng6Hc3V1NTU1/ZYA2ILmpbfXmqmZLHQNwx4KXjh9+nx0dEVlpYWFxbwNG1xcXDIzMvaGhaUxGNiL5SgAUWfOhKPomasPBMJz9GfuTWtrus3brNKVVvj3nuG+4y/9c3LykCGTa2tn8/l1AERfvBjbv//huLiJQ4c6p6dnczhyAKAAnDhxwj83SynU3L6YMfvMC3FIugC4czjVtraJ794NQxBxeQMA7+XkPD09E58927xsWdT9+3Jycv28vW9v3AjfeYcgqG2gv6TIyMhly5ZJO4ovQRCkqanpBw58W182K2lJSNwsF2fzSAWFBAAOyMm5aGmdiolBUfTPKVNGWekvnOk4brvXUUtqP03Nk4cPIwgyNzh4uIbGRQBSAVhNobiampaWlgqFwrnBwd5aWttIpK0KCl5aWgtDQ0UiEYqiSTdvelhbO+voOOvpzRg3rrq6Grt6VlZW8HA/t4iBvit9/7l2FSv8Y8iQOaqqpQAIAHgMgDeVGr1jx/iBA3M/PorD/iEAOGtpyeH1xWV4Iq/r5P09tk9XN+/ay8ys8NP6c1VUItavH6OpKVlYoU3xifIasHRALg6Hflp/M5l86NAhBxotEY/HSkoA8KJSL50710bftK8QCoVsNrtjriVdAoGgublZ2lF0BD6fz+FwpB1FR+DxeFwuV9pRdAQul8vj8dr2nLBH2BEyMjKePn6srqVFtKScKrkY3G3spkEzr1d80MN2C4WhdPqA5cuJysrvrly5xGCAVxUPnHV3znEem1mxe91qrkCAXLt27eOjOK/m5qElJdNHjfIcPJh66VJyczNWvpjLXXHhwg5jY3UqNX716jNMJnb++EuXfDMybj19evrw4Zu7dhiGmvu85Y6KebpF7dHNwYOHBwcrZGTsbWjATuIMQAKD0ScyEkcm233aChwA5jjcM/T/b1YgAvnCo7M0e2RY/Vmmkk03KCcAvki8d25j4/hTp6YyGOKSTAedqGn27lfe3KnXfIXDOX76OPCFouICF5cbOTmrZs1amZUFRCINGm393r19+/Vri28CBEFQ6zpdIqxm01kCNkWOrK2o2QHzidTV1QUNHqxTUuLOZN4dYfmyv5EXy1FZmeTNYutJVFMAYF5d3dFt2+Z9TBv9cqrsXjN2TbLRXtj95KkDpz4dkNIDALSi4sLRo9kfsyBmNZvd7++/BTzeIyZTPGJkuEjUWFW1afnyzIR4jyBThWbB8r+f4VFwnMkcl5gY29AQUl8veRJ5AIZyODcVFesA0G7RHADweC4QNQLw/wXZa7PNeG9feQTTQrZ4Bl8r9E5/Ly9AAADaAHCam/l4PECQ97qK+yd0f09TXLs3592rOvo07+3v3g2g08Xnv4/DvdPRcXR0xOFwR65c+cEvNwRB0PfrFIkQBeiTqryEoqRHlbkKBJIKSblZwGEJ2A7aNt4mnu6Gff5rtMjPmz569Nzc3MGIaOckW9RU7dKqOzNxj5pCecZsdouaRijaVFurJlGiwuKv3p/7p5dJ9iTLD801xs/pkvX1Aajl84mfnkQBAC6b7Sgn12LcpJ9QGHUryeoPY6JAtOrAEzzyb1csmMHYVlioBFpSFArt+vWLptPXSMSZDwCioxM8uPfJk+MF6AUAFAEAADQQceOmjB+ZE3t6k7rw7FDzmLFWvZ7V2BQyylkCCyf7q/UVBdbKFTqK4xOK1u95TBQiO6nUkAkTho8bNyQ0tE9zswGH80RJidmly5mrV3Ht9o2AIAj6L7KfCEsbynZlHWzgN/l39Z3XY7oa6d8RFg28xuzKJ+cLrh55FjvXeZqrntNPXojP50+fMvNu6mMUoB5eLof+PtDc3FxbUOCLINum2L+jKe2MyKRwhRsAb1ZamkBZGTCZkoe/IRAMunXLqqzsy+NJllc/b1JSYW2e5hB0o3jczRJxeSEACJGIfPoGjAgARE4O/eytOwEBrzjBWI7DXbMvV070/6EoygBQNDQeKCj0/PTdhvvKyhHh4WsrKsKePp3EZCoDcIdEOqqpeebCBSsrKwE/9Mx5CzlgA4BIhCsImz525+4dE0sKs5OTI7dnfdCmPLbRemxBTVOhOLrZVb5SYV56GP24TF+ENAAQoazM69HD09MTAJBeVJSdnV1ZWTnYysrWtvXJ1SAIgtpd2z5ybCttMlgGQZEzLy75Xwy6+uaGCEH+q1rWh9xxV6bsyIrmCL7jUXOLwTJFRUUUkp48WAxALgC58rilZHna9evXg3V0Iqc7zFvZh0MiYANA+AD0NDV17tLlpcQ4kToAnLW0CgoKHPX1H0uUnyMQfF1db6em+prqTt7ovinMkStPQAE4RSROHDZs8bRpB0kkyfEme0ik5bNn2+noNEsU8uXwwQtd/XaMGq+t1WJ8ygYK5XB0tJOR0Z2PQ1dEAOwhkQIGDcLa9c+1a7MDA4MGDdq1eTOLxRK3l8fjJSUlpaSkCAQCrITFYk0dPdpTS2ulquoMTU0nff2Eq/8OxrkcFzfA1tZFX9/D2vrv/fux4Ty/IDhYRvbAwTKypz0Gy8hsIuQIOH/diwxLXFTNpn+1MovP3pSxMyg+7GXt6288f4tEaG5kjwfnJbMMHlzsot/dfU7PeSv7cOQJ4h1vABjVr9/Lly97m5vPUVePweFWKSs70miJCQkoihYWFvq4uAzS1p6mpdVbS2vq6NFMJhNF0aP79zsb0EbP7zkswtPP0mC8j09TUxObzR7h7h5CpV4E4CIAQVTqGC8vDodzLDp6iLp6OQAoAHR1hYC1bn3C3apra4b06nVcTk4cSSoO18PEhMPhlJeXj/Hy6q2tPUpHx0FLa/ns2ZK/JUUikWQK/LKKiorExMTs7Ozf8WcSJkLZAxOh7GmPRIhDP7uN9ivYvHlzQ0NDZGTkjx3eyG8Kv72+i4rBItdZRALx6wcAAAC4U5a+K/vQRJuAUZZ+X62MoiibzRYvjCdP0Bcg74HkRJ041GJSH4PuaktXp/pwBP8eBcBENbUxR474jxolEonu3bv35tUrwy5dPDw8FBUVxYfS6fT379+bm5srK/9/hmsmk5mVlXW37mGe3Ot5rtPFE37euXMnMzUVh8P19fZ2c3PDCtNSUzctWMBW48v/YapXqbxv3gFNDc3GxsZVc+c+uHHDEo8vA8DA1nbHiRP6+v8u287j8aqrq/X19QmET8YQIQjC4XAkw5NVIpGok6xHKBQKBQJBZ5h8VSAQiESizjDZEJ/PR1GU9B9TUsgSHo+Hw+Hk5eW/XvWbyWAiZHCYf6b+1UvfZYbjpM+nkP6ySlb18rsbbbWs57vMkMN/aUxpi0RIJBgLkbf/341Du4YcVDK6dHFqzOTBw23fv/eor68nEGLV1ftPnLhm+/bvbpWEQmbJpoydBsq0MMcQA2W9VusIEOH5gquXX/+zss+fzrr2n+wSCN6+fWtgYPCNvwdhIpQ9MBHKHpgIf4asJcI6DnNBykofk/5BNmN/7NLNAs6G9G0cIXe927IvLDnUIhEqEPV5wpcAqAIAcHjEYvoeBY3Kwt1n2U1lKIomJyc/SU9X19EZ4ONjbt76wrPfRSASXHh17ULBtd4GPXxM+ttr24gHvjI4zHvlmWdfXjZWNVrUc9aXp9L+FjARyh6YCGUPTIQ/Q6YSIZPbsCBlhbex5w9nQQyCooefnrhXnrnRfYWpWpdW67RIhJMnTo2NrRWg53EEOatZ2+TI7MLd+eNGqZ44c+xnIvmyRn7TjeKUtLf33zd9oCnpkuVIDG59E4/lquc00sLPRsuqTa4CE6HsgYlQ9sBE+DNk5/WJRn7TotS/PI36/WQWBADgcbgwxxBzdZOFKavm95ju1cXtq4ccPfl3PWNcUrp11zB7hA/e7Mr1GeDSrlkQAKAirxxoPTLQemQTn1XJquaJeKokVX1l3Q6YKACCIEhmyEgiZAuaF6etcdVzCrUb31bnHGjsYaxquOZ+VNaH3Lku0xSJX+koLItZhqbvMuDoOIqsh5Yf0tbW/nL9NqQsr6RM/fy1eAiCIOjrZCERcoTcxWlrbLWswxxD2vbM5uqmR4bs2p97NCRhzjSH4IHGnq3OQcMT8f9+Fnvn3YM1bkscdOCL4RAEQb8TWUiELD7L3bB3YLeR7XFyBTmFRa6zXtS+2p9zNPbFxcGmA/oZ9NRXpuEADkGR14yi9PdZ8YWJTrp2R/x2q8j/5+AaCIIg6NckC4lQi6I5vtuodr1Ed02r/T5b8ukFiSVpS26vZXCY8gR5voivp6TrQnPY6x1pqKLfrgFAEARB7UQWEmHHwAGcrVY3W61uAACeiM8T8gRcgYYqVdpxQRAEQT8FJsIfQSLIy+OJbEHLFSQgCIKg3w7+61UgCIIgSHa1VyIMDw/3/igkJAQrLCws9JZw48aNdrp6B6ivr8/MzJR2FB2htrY2KytL2lF0hKqqqtzcXGlH0RHev3///PlzaUfREd69e/fixQtpR9ERiouLX716Je0oOsKbN2+Kiora9pztdWs0Nze3V69eHh4eAADxVB1NTU15eXmxsbHYprW1dTtdvQNkZmbu3r3b29tb2oG0u/v37586dap///7SDqTdpaWl3bhxo1+/ftIOpN0lJSVlZWX17NlT2oG0u/j4+NLSUmdnZ2kH0u4uXbrEYrHs7e2/XvU3d+7cOXl5+TVr1rThOdvxGaGtre3AgQNbFJLJ5M8LoV/ZrzkJX3uALZU9sKUyqc0b247PCCMiIvr06TN16tTi4mJxIZ1Od3Nz8/X13bdvn1AobL+rQxAEQdC3aK8e4ZQpU2g0GpFIjI2N7dOnT35+vpaWlra29oEDB6ytrcvLy8PDw8vKyqKiolo9PC8v7/LlywcPHsQ2SSRScnKyqalpO0X7A7hcrlAoZLFY0g6k3XG5XGxtXmkH0u461fe0k7SUx+MJBILO0FI+n8/n8ztJS1EU/faWUigUPP4rXb6OWH3C3t5+/vz5kydPlixMSkoKCgqi0+mtHjJ9+vSkpCQTE5N/o8Th5OR+rTc96urqysrKHB0dpR1Iu6upqamqqrKzs5N2IO2usrKyrq7OxsZG2oG0u4qKisbGxt/6If03Kisr43A4lpaW0g6k3ZWWlopEojZZ5e0XV1xcjMfjxdnhq0aOHDlr1qwv1+mI7KKurt7c3NyikEqlcjgcFEVxrc3euXjx4oEDB1Kpv+7r6nw+n06ni5d3l2FcLpfBYOjptb4CsCxpbm5uamrS0dGRdiDtjsVicTgcLS0taQfS7pqamng8nqbmz67K+etraGgQiUS/8u/MtsJkMnE4nJqa2jfW/5aU2S49QhaLlZub27dvXxwOFxcXFxISkpOT061bt+zsbENDQ11d3dra2uDgYDKZfPny5Ta/OgRBEAR9u3bpEfL5/LCwsKKiIiKRaGRkdPr06W7dugEAHj586O3tLRKJUBQdNmzY7t272+PqEARBEPTt2vEZoVAoFIlEn6+YzGazO8Ny5xAEQdBvoSMGy0AQBEHQLwvONQpBEAR1ar/WOwm/C4FAcOvWrdraWi8vLwMDA2mH08YEAkFeXh6LxXJ3d5csLywsTE9PNzQ09PLyanWs72/n9evXubm5JBKpX79+2tra4vLq6upbt24pKyv7+vp+fm//t8Pn83Nzc7Fn9n369DE0NBTvqqioSE1NpVKpPj4+RCJRikG2rbq6uidPnjg5OYlHUTIYjKSkJHl5eV9fXxl4NFNbW/v06VPxpoODg3hkbGlp6d27d/X09AYMGEAgEKQUYBsrLi5OT08nk8lubm66urpYYWlp6b1792g0Whu0FIW+k0Ag8PDw6NWr1+TJk6lU6oMHD6QdUVtKSkoikUiampra2tqS5VeuXNHQ0Jg2bZqdnV1AQIC0wmtDkZGRBgYGAQEB/v7+qqqqt2/fxsqfP3+uoaExceLE/v37Ozk5sdlsqYbZBi5evOjq6jpp0qSxY8eqqKicOXMGK3/48CGVSg0NDe3bt2+/fv2w95Rlg7+/v5ycXHJyMrZZXFyso6MTGBg4ePBgKysrJpMp3fB+Xnx8vJqa2sCPHj16hJUnJiZSqdSpU6c6OTkNGzYMQRDpxtkmduzYoaWlFRAQMG7cuLCwMKxQ3FJnZ2c/P7+fbClMhN/typUrFhYWPB4PRdHt27cPGDBA2hG1JQaDUVtbe/fuXclEiCCItbU19gu0oaFBS0srKytLejG2jbdv3woEAuzz6tWrPTw8sM/jxo1bvnw5iqIikahnz55///23tCJsD9HR0fb29thnX1/fyMhIFEX5fH737t0vXLgg1dDazOnTp4ODg/X19cWJcMaMGdgvUARBBg0aFBUVJdUA20B8fHzfvn0/L3d2dsb+x7LZbAMDA/Gfd7+v3NxcZWXl4uLiFuU9evQ4fPgwiqJsNtvQ0DAtLe1nrgKfEX63hISE4cOHy8vLAwDGjBmTlpb2+XQBvy91dXUNDY0WhcXFxYWFhSNGjAAAqKioeHt7JyQkSCO6ttSlSxfxdEU0Go3H42GfExISxowZAwDA4/EjR46UgZZKYrPZ2D00Ho+XnJw8evRoAACRSPT395eNltbW1m7cuHHbtm2ShQkJCVhLcTjc6NGjZaOlzc3NSUlJ2dnZfD4fK/nw4UNOTg7WUgqFMnjwYBlo6fnz50ePHk0mk1NSUioqKrDCqqqq7Oxs7Oe0TVoKE+F3q6ioEE8og8238uHDB6lG1O4qKio0NDTIZDK2qa+vL/4fKQNYLNbOnTunTp0KAGAymc3NzeLvr8y0tK6uztvbu1evXrGxsUeOHAEAVFVVIQgifsItMy2dPXv2ihUrJJ/4IghSXV0tey3l8/n79+8PCgqys7PDFjb48OGDkpKSeMoV2Wgp9le4j49PTEyMvb19TEwMAKCiokJRUVFdXR2r8/MthYnwu4lEIvEUrng8HofDyfwyGiKRSHJ0DIFAkJkm8/n8gIAAFxcXbC5ckUgEABA3VmZaqqSkFB4evnDhQjwej01kIZMt/eeffxobG4OCgiQLEQRBEETGWjpkyJD8/Pz4+PiCggJXV9fFixcDGf055XK579+/f/To0fnz5y9fvrxgwQI2m93mLYWjRr8bjUarqanBPtPpdARBZH4eThqNxmAwhEIhdi+xurqaRqNJO6g2IBAIAgMDSSTSiRMnsJ8rDQ0NeXl5Op2OdSmqq6tl45tLIpGwdUDt7OxsbGw2btyIDb2j0+nYIFLZaGlERASVSp0xYwYAoL6+fvfu3Vwud9iwYZqamnQ6HZt6WzZaKh4kicfjAwMDsUmldXV1sVlksZs3svFzSqPRKBQK1qJ+/frxeLySkhIajcZisZqbm7FV33++pbBH+N08PT2xh/AAgOTkZCcnJxUVFWkH1b66du2qpaV1584dAIBQKExLS5OBBetFItGkSZM4HM7Zs2fFDwtxOJyHh0dycjK2mZyc7OnpKbUQ2wGdTldQUCCRSBQKpWfPnjLW0g0bNoSEhGADKUkkkqOjI7Z2m6enZ1JSElZHNloqKScnB/trxtDQ0NTU9NatWwAABEFSUlJk4Od0wIABRUVF2OeSkhIURfX19Q0MDLp27Yr9722TlsIe4XcLCAiIiIgIDg62t7ffunWreNFE2VBdXb169erKysqmpqYZM2bo6+uvXr1aTk5u2bJlU6ZMWbBgwZ07d3R1dbHuxW8tIiLiwoULQUFB8+bNAwCoqKhs3boVALBs2bJRo0ZxudyysrLnz5+fOnVK2pH+rFWrVtXV1ZmZmdHp9OPHj69YsQLrT6xYsWLy5Ml1dXUvX76srKycMGGCtCP9WZL/LRcuXOju7t69e3cAwJIlSwYMGCAnJ9fQ0JCcnJybmyu9GNvGggULEAQxMjIqKCi4cOHClStXAAB4PH7lypUzZ84sKirKyMggkUjDhg2TdqQ/a9SoURERERMnTuzZs2dMTMycOXOwd0NXrFgxa9askpKSzMxMIpE4fPjwn7kKnGLtRzAYjGPHjjGZzMGDB/ft21fa4bSl+vr6CxcuiDepVCo2NAsAkJSUhL2oGxoaKgOvJKenp7948UK8SSaTg4ODsc+5ublXr15VVFScOHGiDNxcevv27c2bN8vKytTU1Pr37+/q6irelZmZef36dTU1tZCQEBlbq+j06dOenp7icU/5+fkXL16Ul5cPCgoyMjKSbmw/7/nz5ykpKTU1Nbq6uiNGjDA2NhbvSktLS01N1dHRCQkJkY2bVU1NTcePH6+pqXF1dZVM7VhLtbW1Q0NDf7KlMBFCEARBnRp8RghBEAR1ajARQhAEQZ0aTIQQBEFQpwYTIQRBENSpwUQIQRAEdWowEUIQBEGdGkyEEPRLy8nJOX/+vLSjaB2fz29sbPzhwwUCAYvFasN4IOjHwEQIQb+0c+fOzZkzp4MvWl1dvX379gkTJnTv3t3MzOzVq1ctKpSWlg4dOlRRUVFVVVVfX//AgQOSey0sLMw+s3DhQnEFOp0+duxYCoWirKxsbm6OTYwCQdICp1iDoF+ar69vx08S/fz58+XLl3fv3p1Cobx8+VK84h2mvr7e09OTz+cfOXLE2Nj44sWLs2fPlpOTmz59OlZh2rRpCIKI6+fk5MTFxdnY2GCbCIIMHz68uLj4xIkTRkZGu3btGjt2bGpqqoeHR4c1EII+8TOr+kKQrGKxWJWVleIl7CVh69vx+fwvHM5gMBgMhniTzWZXVVUJhcKvXre6urq+vv5bIuRwOJKXaIHJZNbU1LS6i06n19bWfvnkzc3NHA4HRVGsq/fs2TPJvVjhzZs3xSXDhw/X0tL6r6/J6NGjFRUVGxsbsc3Lly8DAGJjY7FNHo9nZGTk5ub25ZAgqP3AW6NQJyIQCCwsLLBZtsVev35NpVJjY2OxzdzcXHd3dxUVFRqNpqWltWnTJvTjNIQFBQWDBg0ik8k6OjoUCsXFxSU9PV18nj179lCp1KysLHt7eyqVOnLkSADAzZs3raysFBUVdXV1FRQU/mvdAxRF//rrL1VVVR0dHTU1NXV19c2bN2O7NmzYIO5LMRgMKpV6+PDhsLAwVVVVKpVqYmKCrTYgdurUKQsLC3V1dW1tbTU1tfXr14t3HT161NjYWEtLS1NT09raOiUl5b++UGQyWUFB4b/25uXlEQgELy8vccmgQYPodLrkV0Osrq4uISEhICBAWVkZK7lx4waJRBLPkiwvLz9ixIj09HQGg/FfV4SgdgUTIdSJEInEkSNHHjt2THKIR0xMjEAgwH4vFxQUeHh4EAiE5OTkvLy85cuXr1u3bsuWLVjN2tpae3v7GzduFBQU3Lx5U0FBwc/PT7w4JZfLZTKZAQEBwcHBGRkZa9asodPpY8aMcXZ2zsnJefPmTVJSkrOzc6uBnThxYvPmzREREa9evcrPzz948KB4nfHGxsbq6mrsM4qiTCZzzZo1PB4vNTX11q1bysrK2GJSWIWDBw9OnDjRzs4uLS3txYsXhw4dEq8wtXfv3qlTp44dOzY7OzsrK8vGxsbPz+/58+c/8GXE4/Eoikre/MSW+c3Ly2u1aTweD1v3GFNWVmZsbCzOiwAAW1tbBEEKCgp+IBgIagPS7ZBCUAcrLi7G4/GHDh3CNnk8npaW1owZM7DNMWPGdOnShc1mi+vPnz+fSqUiCPL5qWprawkEwtGjR7FNLF/u27dPXAFbwbHFfcVWzZ4928LCotVdixcv1tTUFF8RAODp6Snei/Xqbt++jaIoh8OhUqmSe8VYLJaqqurUqVPFJXw+39zcPDQ09MuBtXprFFt67NKlS+ISb29vAMCaNWs+P4OdnZ2FhYXkF9DGxqZPnz6SdbCbpfHx8V8OBoLaCRwsA3UupqamPj4+0dHR2MiOS5cu0el08SiP5OTk3r17Z2RkiOurqakxGIwPHz5gC/rU1NScP3++tLSUzWYDAEgkknjVUIy/v7/4s6WlJYVCmTRpUlhY2LBhw74w5sXR0XH//v0TJkwICgry8PD48ipXvr6+4s/W1tYAgPLycgBAbm4ug8GYMmXK54c8evSooaHByMhI8naosbFxfn7+Fy70X8aPH79ly5bJkyeXlJQYGxtfunTp8ePHrdZ89OjR8+fPt2zZgsPhxIUikQiP/+ReFLY+omQXE4I6EkyEUKczc+bM4cOH5+TkODs7Hz58uEePHk5OTgAADofT2Nh47969rKwsyfrq6uo1NTX6+vrXr1/Huoxubm7q6up4PJ5AILR4kU5HR0f8WVdXNyEhYdWqVbNmzQoLC3NwcFi9ejX27LCF0NDQ2tragwcPnj17VkFBwcfHZ9u2bebm5q3Gr66uLv5MIpEAADweDwCA9RcNDAw+PwS7ubpt2zYs5Yj92HhUFRWVe/fuLV++PDo6ura21t3dfe/evUFBQZJtxxw5ckROTk680COGRqNVVVVJltTV1QEAxHeDIaiDwUQIdTp+fn7GxsYxMTFqamp3796NiYnByhUUFEgk0sSJE7Fbf5+LiIhwdXVNS0sT92B27drVok6Lvk7//v3T09Pr6uru3Lmzc+fOMWPGPH782NHR8fOjwsPDw8PDX79+nZiYGBkZOWTIkNevX0t2pL4KSyTiB4qSVFVVAQDnzp0bPHjwt5/wCwwMDE6dOiXe3LdvHwCgR48eknU4HE5cXJyfn1+LxY319fWzsrJ4PB6WxQEAhYWFAAALC4s2iQ2CvhccLAN1Ong8furUqadPn46KilJSUho3bhxWjsPh3Nzcbty48V/TnZSWljo4OIg7VampqVhX7Ks0NDRGjx599uxZBEFadDdbsLS0nD9/fnh4eGFh4feOonRyclJSUrpw4dydTgEAAAMVSURBVMLnu3r27EkikeLi4r7rhN+Iz+fv3r3bzs7OxcVFsvzChQv19fWSw2QwXl5eLBYrNTUV20RR9Nq1a3Z2di3yJQR1GJgIoc5oypQpfD4/JiYmKChIcvjihg0bqqqq/P39s7OzORxORUVFfHz8/Pnzsb329vZxcXE5OTk8Hi8lJSUsLOwL7xgAAG7durVx48aXL1/yeLz6+vrDhw/jcLjPu4MAgMjIyNOnT5eXlyMIUlhYePnyZWNjYw0Nje9qlJKSUnh4+JUrVxYvXlxaWtrc3JydnX3kyBEAgIaGxtKlS48fP75s2bLS0lIOh/PmzZsDBw6Ie8MtiESiuLi4uLi43NxcAEBycnJcXJzk88VNmzbdvn27uLj49u3bQ4YMKS8vbzG5DADgyJEjOjo6n/dBAwMDTU1NFy5cmJubW1NTEx4e/vLlyxUrVnxXYyGoLUl7tA4EScfYsWMBAE+ePGlRnpKSgo1AwSgqKk6fPh3b9fr1aysrK6xcRUXl1KlThoaGc+bMwfZio0Yl35pPSUmR7OVoaGgcOHCg1WCWLVtGoVDENR0cHHJzc7Fdn48aFQ95FZfExMRgmwiCbNiwQTzWhkAgzJ07V7wrMjJS8jmcoaGh+K32FrChQC04OTmJK0i+B2JlZYUNW5X05s0bHA4XHh7e6vkLCgrs7Oyww8lkclRUVKvVIKhj4NCPLwtDUKfi7u7O5/MfPnzY6t6SkpLa2lo1NTVjY2N5eXlxuVAoLC4ubm5utrKyIpPJ33Kh8vLyyspKFRUVU1NTyVO1wOfzS0pKGhsbaTSaoaGhuBz7QW3x6PHLuFxuQUEBiqLGxsZUKlVyl1AoLCgo4HA4+vr6enp63/UMsoWysrKqqip1dfWuXbv+2Blev37d1NRkaWkp2SmHoI4HEyHUGd2+fdvLy+v8+fPiB4QQBHVa8Bkh1LncvXvX1tbWx8fHy8tr9OjR0g4HgiDpgz1CqHN59+5dUlKSnp6ej48PkUiUdjgQBEkfTIQQBEFQpwZvjUIQBEGdGkyEEARBUKcGEyEEQRDUqf0PnGZGAZIkD0EAAAAASUVORK5CYII=", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Different basis functions:\n", "\n", "f(t) = 1\n", "g(t) = t\n", "h(t) = t^3\n", "j(t) = cos(t)\n", "\n", "A = [f.(r) g.(r) h.(r) j.(r)]\n", "c = A \\ (y/1e6) \n", "\n", "p′(x) = c[1] * f(x) + c[2] * g(x) + c[3] * h(x) + c[4] * j(x)\n", "\n", "scatter( 1:54, pop'/1e6 , title=\"population of UK\", label=\"testing data\", xlabel=\"years since 1970\", ylabel=\"/millions\",color=\"red\")\n", "\n", "println( \"training error: \", norm( p′.(r) - y/1e6 ) )\n", "println( \"testing error: \", norm( p′.(1:54) - pop'/1e6 ) )\n", "\n", "scatter!( r, y/1e6 , label=\"training data\", xlabel=\"years since 1970\", ylabel=\"/millions\",color=\"blue\")\n", "plot!( p′, -5, 60, label=\"model\" )" ] }, { "cell_type": "markdown", "id": "1a01df75", "metadata": {}, "source": [ ":::{.callout-note}\n", "# Theorem (Linear Least Squares)\n", "\n", "Suppose $x$ solves the *normal equations* $A^TAx = bx$. Then, $x$ minimises the error $|Ax - b|$.\n", "\n", ":::\n", "\n", ":::{.callout-note icon=false}\n", "# Proof \n", "\n", "Suppose that $x$ solves the normal equations and $\\delta x \\in \\mathbb R^{n}$. Notice that $|u+v|^2 = |u|^2 + 2 v^T u + |v|^2$ and so we have\n", "\n", "\\begin{align}\n", " |A(x+\\delta x) - b|^2 &= |(Ax-b) + A\\delta x|^2 \\nonumber\\\\\n", " %\n", " &= |Ax-b|^2 + 2(\\delta x)^T A^T(Ax - b) + |A\\delta x|^2 \\nonumber\\\\\n", " %\n", " &= |Ax-b|^2 + |A\\delta x|^2 \\nonumber\\\\\n", " %\n", " &\\geq |Ax-b|^2.\n", "\\end{align}\n", "\n", "That is $x$ is a minimiser of the function $y \\mapsto |Ay - b|$.\n", "\n", ":::\n", "\n", ":::{.callout-note icon=false}\n", "# Remark\n", "\n", "Where do the normal equations come from? Since $|Ax-b|^2 = (Ax-b)^T(Ax-b)$, you can show that the derivative with respect to $x_k$ is\n", "\n", "\\begin{align}\n", " \\frac{\\mathrm{d}}\n", " {\\mathrm{d}x_k}\n", " \\left( \\sum_{i=1}^n (Ax-b)_i (Ax-b)_i \\right)\n", " %\n", " &= 2\\sum_{i=1}^n A_{ik} (Ax - b)_i\n", " %\n", " = 2 \\big( A^T(Ax - b) \\big)_k.\n", "\\end{align}\n", "\n", "Therefore, the set of critical points of the function $y \\mapsto |Ay-b|^2$ satisfy $A^T(Ax - b) = 0$.\n", "\n", ":::\n", "\n", "Therefore, in order to solve the linear least squares problem, we could solve $A^TA x = A^T b$ which is now a square matrix equation that we have seen how to deal with (i.e. (P)LU decomposition + forwards and backwards substitution). The problem is that \"$\\kappa(A^TA) = \\kappa(A)^2$\" (one can define the condition number of a rectangular matrix but we haven't seen the definition) and so for large matrices, this problem is ill-conditioned.\n", "\n", "Instead: the built-in function in Julia uses the so-called QR-factorisation which plays the role of the LU decomposition but for solving overdetermined systems of equations. We may return to this in the last week of semester but we just saw the very basics:\n", "\n", "Suppose that $A \\in \\mathbb R^{m \\times n}$ such that $A = QR$ with $Q \\in \\mathbb R^{m\\times n}$ with orthonormal columns (i.e. $Q^{T} Q = I$) and $R \\in \\mathbb R^{m\\times m}$ upper triangular. If one has such a decomposition, then \n", "\n", "\\begin{align}\n", " A^T A x = (QR)^T (QR) x\n", " %\n", " = R^T Q^TQR x\n", " %\n", " = R^T R x\n", "\\end{align}\n", "\n", "and \n", "\n", "\\begin{align}\n", " A^T b = (QR)^T b = R^T Q b\n", "\\end{align}\n", "\n", "\n", "It turns out that if $A$ has linearly independent columns, then $R^T$ is invertible and $A^TAx = A^Tb$ is equivalent to $R x = Q b$. Solving this system is possible by backwards substitution. " ] } ], "metadata": { "kernelspec": { "display_name": "Julia 1.11.6", "language": "julia", "name": "julia-1.11" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.11.6" } }, "nbformat": 4, "nbformat_minor": 5 }