
1AEDP – EXTRA QUESTIONS

JACK THOMAS

1. Banach Spaces

1.1. Let (fn) be the sequence defined by (2.5). The lecture notes use (fn) to show that(
C0([0, 1]), ∥ · ∥L1

)
is not a Banach space. Show, directly from the definition, that

(fn) is not Cauchy in
(
C0([0, 1]), ∥ · ∥C0([0,1])

)
.

(We can also argue that, since
(
C0([0, 1]), ∥ · ∥C0([0,1])

)
is a Banach space, if (fn)

was Cauchy, then the limiting function f satisfying supx∈[0,1] |fn(x) − f(x)| → 0
must be continuous, a contradiction).

1.2. The Fermi–Dirac function is defined by Fβ(x) =
(
1+ eβ(x−µ)

)−1
where β ⩾ 0 is the

inverse Fermi-temperature and µ ∈ R is the chemical potential. Is (Fβ)β∈N Cauchy
in

(
C0([0, 1]), ∥ · ∥C0([0,1])

)
? What about

(
C0([0, 1]), ∥ · ∥L1

)
?

1.3. Is (x 7→ xn) Cauchy in
(
C0([0, 1]), ∥ · ∥C0([0,1])

)
?

2. Change of Variables in Integrals

2.1. Use polar coordinates to evaluate∫ ∞

0

e−x2

dx.

Hence show that f(x) := 1√
2πσ2

e−
(x−µ)2

2σ2 is a probability distribution function on R
(i.e. show that it is positive and integrates to 1). Write down a recurrence for the
moments µn :=

∫
xnf(x)dx.

2.2. What is the area of an Ellipse{
(x, y) ∈ R2 :

(x
a

)2

+
(y
b

)2

⩽ 1

}
.

2.3. Calculate the volume of the Ellipsoid{
(x, y, z) ∈ R3 :

(x
a

)2

+
(y
b

)2

+
(z
c

)2

⩽ 1

}
.

3. Hilbert Spaces

3.1. Let RN×N
sym ⊂ RN×N denote the space of symmetric N × N matrices. (i) Show

that RN×N with inner product (A,B)F := TrATB (known as the Frobenius inner
product) is a Hilbert space. (ii) Show that RN×N

sym is a closed linear subspace. (iii)
What is the orthogonal projection PRN×N

sym
?

3.2. Fix u ∈ V . Show that φu : V → K defined by v 7→ (u, v)V is a bounded linear
functional on V with norm ∥φu∥L(V,K) = ∥u∥V .
[This is the reverse of the Riesz representation theorem]
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4. Caratheodory construction of measures

A measure on an algebra A is a map µ0 : A → R with µ0(A) ⩾ 0, µ0(∅) = 0, and
µ0 (

⋃
nAn) =

∑
n µ0(An) for a (countable) sequence of pairwise disjoint elements An ∈ A.

[this is sometimes called a pre-measure]

Theorem 4.1 (Caratheodory Extension Theorem). Suppose µ0 : A → R is a measure
on the algebra A. There exists a measure µ : σ(A) → R extending µ0 to the σ-algebra
generated by A. If µ0 is σ-finite, then µ is unique.

4.1. Define µ⋆ : P(X) → R by

µ⋆(A) := inf

{∑
n

µ0(An) : (An)
∞
n=1 ⊂ A, A ⊆

⋃
n

An

}
. (4.1)

Show that (i) µ⋆(∅) = 0, (ii) A ⊂ B =⇒ µ⋆(A) ⩽ µ⋆(B), and (iii) (An)
∞
n=1 ⊂

X =⇒ µ⋆ (
⋃

nAn) ⩽
∑

n µ
⋆(An).

[any map satisfying these properties is called an outer measure]
4.2. Define

M := {B ⊆ X : µ⋆(A) = µ⋆(A ∩B) + µ⋆(A \B) ∀A ⊆ X} . (4.2)

Show that M is a σ-algebra.
[B ∈ M is known as µ⋆-measurable]

4.3. Show that µ := µ⋆
∣∣
M : M → R is a measure.

4.4. Show that A ⊆ M and thus σ(A) ⊆ M.
4.5. It is possible to show (but is more difficult) that if ν is another measure on M

with ν(A) = µ(A) for all A ∈ A then we actually have:

ν(A) ⩽ µ(A) for all A ∈ M, (4.3)

A ∈ M with µ(A) <∞ =⇒ ν(A) = µ(A). (4.4)

Use this to show that if there exists a countable sequence (An) ⊂ M with X =⋃
nAn and µ(An) <∞ [i.e. if µ is σ-finite], then ν(A) = ν(A) for all A ∈ M.

4.6. Suppose A is the algebra of finite unions of open intervals on R and define µ0(∅) = 0
and µ0(A) = +∞ if A ̸= ∅. Show that the extension of µ0 to the Borel σ-algebra
is not unique. Why does this not contradict the conclusions of the theorem?

5. Measure Theory

5.1. Assume that Fatou’s lemma is satisfied (you can prove this directly without using
the monotone convergence theorem). Prove the montone convergence theorem
using Fatou’s lemma.

5.2. Suppose φ ⩾ 0 is a smooth, compactly supported function with
∫
Rd φ(x)dx = 1

(integral with respect to the Lebesgue measure in Rd). Define φn(x) := nαφ(nx).
What choice of α gives

∫
φn = 1 for all n? Suppose that f is a continuous function.

Show that
∫
Rd f(x)φn(x)dx→ f(0) as n→ ∞.
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6. Quiz

Jack.ThomasLabs.co.uk/vote

1. True or false: C0([a, b]) with the norm
∫ b

a
|f(x)|dx is complete?

A. True B. False

2. True or false: ∥f∥ :=
∫
|f ′(x)|dx defines a norm on C0([a, b])?

A. True B. False

3. Suppose ∥ · ∥1, ∥ · ∥2 are norms on a vector space V . Which of the following is not
a norm?

A. ∥v∥A := ∥v∥1 + ∥v∥2 B. ∥v∥D :=
(
∥v∥1/21 + ∥v∥1/22

)2

C. ∥v∥B := maxj=1,2 ∥v∥j D. ∥v∥D := (∥v∥20241 + ∥v∥20242 )
1

2024

4. Which of the following inequalities holds for all f ∈ C0([0, 1])?

A. ∥f∥C0([0,1]) ⩽ ∥f∥L1 B. ∥f∥C0([0,1]) ⩾ ∥f∥L1

C. Neither A or B

Jack.ThomasLabs.co.uk/vote
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5. Suppose T : V → W is a linear operator between normed vector spaces. Which is
the odd one out?

A. T is continuous at 0 B. ∥Tu∥W <∞ for all u ∈ V

C. T is continuous C. ∥T∥L(V,W ) <∞

6. Take V = Rd which is a Hilbert space with (u, v) :=
∑

i uivi. Let K = {x ∈
Rd : |x| = 1}. What is PKu?

A. Not defined because K is not a
closed linear subspace.

B. PKu = u
|u|

C. PKu = u if |u| ⩽ 1 and PKu =
u
|u| otherwise

D. Something else

7. Riesz representation theorem states

A. lim inf
∫
fn ⩾

∫
lim inf fn

B. For every u ∈ V , there exists a
unique ϕ ∈ V ′ such that (u, v) =
ϕ(v) for all v ∈ V .

C. Every σ−finite measure defined
on an alegbra A can be uniquely
extended to a measure on σ(A).

D. For every ϕ ∈ V ′, there exists
unique u ∈ V such that ϕ(v) =
(u, v) for all v ∈ V .

8. True or False: For a measure µ and measurable sets A,B, we always have
µ(A ∩ (X \B)) = µ(A)− µ(B)?

A. True B. False
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9. Let f(x) := x if x ̸∈ Q and f(x) = 0 if x ∈ Q. What is
∫
[0,1]

f(x)dx (integration

with respect to Lebesgue measure)?

A. Undefined: f is not measurable B. 0

C. 1 D. 1
2

10. Which way round is Fatou’s lemma? (fn sequence of non-negative measurable
functions)

A. lim inf
∫
fn ⩽

∫
lim inf fn A. lim inf

∫
fn ⩾

∫
lim inf fn

11. Let f(x) := x if x ̸∈ Q and f(x) = 0 if x ∈ Q. What is
∫
[0,1]

f(x)dx (integration

with respect to Lebesgue measure)?

A. Undefined: f is not measurable B. 0

C. 1 D. 1
2

12. How are you feeling about the exam?

A. Terrible B. Not great

C. It’ll be okay D. Very confident!
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7. Fourier Series

For a function u ∈ L1((−π, π);C), we define ũ to be its periodic extension to R,

cn(u) :=
1√
2π

∫ π

−π

u(x)e−inxdx and SNu :=
N∑

n=−N

cn(u)e
inx. (7.1)

Essentially because
(
(2π)−

1
2 einx

)
n∈Z forms a Hilbert basis, we have SN (u) → u in L2(−π, π)

(Theorem 6.2).

7.1. Theorem 6.1 states that, for u, v ∈ L1(−π, π), we have u = v if and only if
cn(u) = cn(v) for all n. Show that if u ∈ L1(−π, π) with

∑
n∈Z |cn(u)| <∞, then

limN→∞ SN(x) = u(x) almost everywhere. In particular, in this case, u is almost
everywhere equal to a continuous function,

7.2. Use the proof of the Riemann-Lebesgue lemma to show that, for ũ ∈ Ck,α with k ⩾ 0
and 0 < α ⩽ 1, we have |cn(u)| ⩽ Cn−(k+α). For which (k, α) does SN(u) → u
pointwise?
[It turns out that using a different proof, SN(u) → u pointwise when ũ ∈ C0,α.

The proof of this fact uses the Dirichlet kernel – see question 7.5]
7.3. An alternative proof of the Reimann–Lebesgue lemma: Suppose P is a trigonmetric

polynomial (P is a finite linear combination of einx for n ∈ Z). Show that cm(P ) = 0
for all sufficiently large |m|. Use the fact that trigonometric polynomials are dense
in L1(−π, π) to conclude.

7.5. Show that (u ⋆ en)(x) = cn(u)e
inx and hence write down an expression for the

Dirichlet kernel, DN , satisfying SNu = DN ⋆ u. First person to read this and let
me know will win some sweets next time we meet. Show that

∫ π

−π
DN(x)dx = 1

and simplify the expression for DN to get DN(x) = A sin(BNx)
sinCx

for some constants
A,BN , C]

7.6. Show that

SNu(0)− u(0) =

∫ π

−π

(
u(−x)− u(0)

)
DN(x)dx

=

∫ π

−π

(
u(−x)− u(0)

) [sin(2Nπx) cosπx
sin πx

+ cos(2Nπx)

]
dx. (7.2)

Suppose that u ∈ L1 and u is differentiable at 0. Show that SNu(0) → u(0). Adapt
this argument to show that SNu(0) → 1

2
[u(0−) + u(0+)] when u is piecewise C1.

7.7. Show that u(x) =
∑∞

n=1
1
n2 sin

[
(2n

3
+ 1)x

2

]
is a continuous function with SNu(0) →

∞ as n→ ∞.

I have moved this question here because it is harder than I thought (and also uses
results for the Dirichlet kernel)!

7.4. (more difficult) We now show that, for a given sequence of positive numbers an
with (an) → 0 as n→ ±∞ such that an = a−n and an ⩽ 1

2
(an−1 + an+1) for n > 0,

there exists a function u ∈ L1(−π, π) such that cn(u) = an. That is, the Fourier
coefficients of an integrable function can decay arbitrarily slowly,

7.4.1. First suppose that an = a−n and that an ⩽ an−1+an+1

2
for n > 0. Define

dn := an−1 − an. Show that dn is decreasing,
∑∞

n=1 dn converges and calculate
its limit, and show that ndn → 0 as n→ ∞.

7.4.2. Hence, show that
∑∞

n=1 n(an−1 + an+1 − 2an) converges and calculate its limit.
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7.4.3. Show that the Fejer kernel Fn := 1
n

∑n−1
m=0Dm is given by

Fn(x) =
1

n

(
sin nx

2

sin x
2

)2

=
∑

|m|⩽n−1

(
1− |m|

n

)
eimx

7.4.4. Using the fact that ∥FN∥L1(−π,π) = 1 (why is this true?), show that

u(x) :=
∞∑
n=1

n(an−1 + an+1 − 2an)Fn(x)

converges absolutely in L1.
7.4.5. Show that

cm(u) =
∞∑

n⩾|m|

n(an−1 + an+1 − 2an)

(
1− |m|

n

)
= a|m|

In summary, for u ∈ L2, we have convergence of the Fourier series in L2 and so, along a
subsequence, we get pointwise convergence almost everywhere. In fact, one may extend
this to get pointwise almost everywhere convergence, but the proof is difficult [Carleson].
For piecewise C1 functions, we get almost everywhere convergence with Gibbs oscillations.
Finally, ũ ∈ C0 is not sufficient to get pointwise convergence, but ũ ∈ C1 is. In fact, one
can show that ∥DN∥L1 ∼ C logN which leads to: for ũ ∈ C0,α,

|u(x)− SNu(x)| ⩽ C
logN

Nα
→ 0 as N → ∞.

The smoother the (periodic extension of) function, the faster the Fourier coefficients
decay. Fourier coefficients may decay arbitrarily slowly for general L1 functions. When,
u extends to an analytic function in the complex plane, the Fourier coefficients decay
exponentially....

8. (Schwartz) Distributions

Recall Ω ⊂ Rd is open. We say that T ∈ D′(Ω) vanishes on U ⊂ Ω if T (φ) = 0 for all
φ ∈ D(Ω) with suppφ ⊂ U . Let U be the union of all open sets on which T vanishes.
Then, suppT = Ω \ U . Suppose that 0 ∈ Ω and consider δ0 ∈ D′(Ω).

8.1. Show that supp ∂αδ0 = {0}.
We now show a converse of this result and characterise the set of all distributions with
support {0}.

8.2. Take η ∈ D(Ω) with η = 1 in a neighbourhood of 0. Why is T (ψ) = T (ηψ) for all
ψ ∈ D(Ω)? Hence, show that T has finite order p ⩾ 0.

8.3. Use Taylor’s theorem to write φ ∈ D(Ω) as φ(x) =
∑

|α|⩽p
∂αφ(0)

α!
xα + θ(x) with

∂αθ(0) = 0 for all |α| ⩽ p. Hence, show that

T (φ) =
∑
|α|⩽p

∂αφ(0)

α!
T (xα) + T (ηθ).

8.4. Explain why |T (ηθ)| ⩽ C| supp η|,
8.5. In particular, since η is arbitrary (as long as η = 1 in a neighbourhood of 0), show

that

T =
∑
|α|⩽p

cα∂
αδ0, where cα :=

(−1)|α|

α!
T (ηxα). (8.1)
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8.6. In general, if suppT = {xn}Nn=1, then T has finite order p ⩾ 0 and is a finite linear
combination of ∂αδxn for |α| ⩽ p and 1 ⩽ n ⩽ N .

9. Quiz

Jack.ThomasLabs.co.uk/vote

1. What is the order of δ0 + δ′0 ∈ D′(R)?

A. not defined B. 0

C. 1 D. 2

2. What is the derivative of T|x| ∈ D′(R)?

A. not defined B. 1

C. Tsgn, sgn(x) =

{
1 if x > 0

−1 if x < 0

D. something else

3. Suppose T ∈ D′(R) and f ∈ C∞. What is (fT )′?

A. not defined B. fT ′

C. f ′T D. fT ′ + f ′T

Jack.ThomasLabs.co.uk/vote
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4. What is the derivative of T(x+1) sgnx?

A. not defined B. x+ δ

C. 2δ0 + sgn(x) D. something else

5. Is
∑∞

n=0 δ
(n)
0 a distribution on D(R)?

A. Yes B. No

6. Is
∑∞

n=1 δ 1
n
a distribution on D(R)?

A. Yes B. No

7. Is
∑∞

n=1 δ 1
n
a distribution on D(R \ {0})?

A. Yes B. No

8. Is
∑∞

n=1(n!)
2δn a distribution on D(R)?

A. Yes B. No

9. Is there distributions of finite order but with supK CK = ∞?
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A. Yes B. No

10. Is there distributions with supK pK = ∞ but with supK CK <∞?

A. Yes B. No

11. Is there distributions with supK pK = ∞ and with supK CK = ∞?

A. Yes B. No
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