1AEDP – EXTRA QUESTIONS

JACK THOMAS

1. BANACH SPACES

- 1.1. Let (f_n) be the sequence defined by (2.5). The lecture notes use (f_n) to show that $(C^0([0,1]), \|\cdot\|_{L^1})$ is not a Banach space. Show, directly from the definition, that (f_n) is not Cauchy in $(C^0([0,1]), \|\cdot\|_{C^0([0,1])})$. (We can also argue that, since $(C^0([0,1]), \|\cdot\|_{C^0([0,1])})$ is a Banach space, if (f_n) was Cauchy, then the limiting function f satisfying $\sup_{x \in [0,1]} |f_n(x) - f(x)| \to 0$ must be continuous, a contradiction).
- 1.2. The Fermi-Dirac function is defined by $F_{\beta}(x) = (1 + e^{\beta(x-\mu)})^{-1}$ where $\beta \ge 0$ is the inverse Fermi-temperature and $\mu \in \mathbb{R}$ is the chemical potential. Is $(F_{\beta})_{\beta \in \mathbb{N}}$ Cauchy in $(C^{0}([0,1]), \|\cdot\|_{C^{0}([0,1])})$? What about $(C^{0}([0,1]), \|\cdot\|_{L^{1}})$?
- 1.3. Is $(x \mapsto x^n)$ Cauchy in $(C^0([0,1]), \|\cdot\|_{C^0([0,1])})$?

2. Change of Variables in Integrals

2.1. Use polar coordinates to evaluate

$$\int_0^\infty e^{-x^2} \mathrm{d}x.$$

Hence show that $f(x) \coloneqq \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ is a probability distribution function on \mathbb{R} (i.e. show that it is positive and integrates to 1). Write down a recurrence for the moments $\mu_n \coloneqq \int x^n f(x) dx$.

2.2. What is the area of an Ellipse

$$\left\{ (x,y) \in \mathbb{R}^2 \colon \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 \leqslant 1 \right\}.$$

2.3. Calculate the volume of the Ellipsoid

$$\left\{ (x, y, z) \in \mathbb{R}^3 \colon \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 \leqslant 1 \right\}.$$

3. HILBERT SPACES

- 3.1. Let $\mathbb{R}_{\text{sym}}^{N \times N} \subset \mathbb{R}^{N \times N}$ denote the space of symmetric $N \times N$ matrices. (i) Show that $\mathbb{R}^{N \times N}$ with inner product $(A, B)_{\text{F}} \coloneqq \text{Tr} A^{\text{T}} B$ (known as the Frobenius inner product) is a Hilbert space. (ii) Show that $\mathbb{R}_{\text{sym}}^{N \times N}$ is a closed linear subspace. (iii) What is the orthogonal projection $P_{\mathbb{R}_{\text{sym}}^{N \times N}}$?
- 3.2. Fix $u \in V$. Show that $\varphi_u \colon V \to \mathbb{K}$ defined by $v \mapsto (u, v)_V$ is a bounded linear functional on V with norm $\|\varphi_u\|_{\mathcal{L}(V,\mathbb{K})} = \|u\|_V$.

[This is the reverse of the Riesz representation theorem]

Date: Sunday 8^{th} December, 2024.

4. CARATHEODORY CONSTRUCTION OF MEASURES

A measure on an algebra \mathcal{A} is a map $\mu_0: \mathcal{A} \to \overline{\mathbb{R}}$ with $\mu_0(\mathcal{A}) \ge 0$, $\mu_0(\emptyset) = 0$, and $\mu_0(\bigcup_n A_n) = \sum_n \mu_0(A_n)$ for a (countable) sequence of pairwise disjoint elements $A_n \in \mathcal{A}$. [this is sometimes called a *pre-measure*]

Theorem 4.1 (Caratheodory Extension Theorem). Suppose $\mu_0: \mathcal{A} \to \overline{\mathbb{R}}$ is a measure on the algebra \mathcal{A} . There exists a measure $\mu: \sigma(\mathcal{A}) \to \overline{\mathbb{R}}$ extending μ_0 to the σ -algebra generated by \mathcal{A} . If μ_0 is σ -finite, then μ is unique.

4.1. Define $\mu^* \colon \mathcal{P}(X) \to \overline{\mathbb{R}}$ by

$$\mu^{\star}(A) \coloneqq \inf\left\{\sum_{n} \mu_0(A_n) \colon (A_n)_{n=1}^{\infty} \subset \mathcal{A}, A \subseteq \bigcup_{n} A_n\right\}.$$
(4.1)

Show that (i) $\mu^*(\emptyset) = 0$, (ii) $A \subset B \implies \mu^*(A) \leq \mu^*(B)$, and (iii) $(A_n)_{n=1}^{\infty} \subset X \implies \mu^*(\bigcup_n A_n) \leq \sum_n \mu^*(A_n)$.

[any map satisfying these properties is called an *outer measure*]

4.2. Define

$$\mathcal{M} \coloneqq \{ B \subseteq X \colon \mu^{\star}(A) = \mu^{\star}(A \cap B) + \mu^{\star}(A \setminus B) \quad \forall A \subseteq X \} \,. \tag{4.2}$$

Show that \mathcal{M} is a σ -algebra.

 $[B \in \mathcal{M} \text{ is known as } \mu^*\text{-measurable}]$

- 4.3. Show that $\mu \coloneqq \mu^* |_{\mathcal{M}} \colon \mathcal{M} \to \overline{\mathbb{R}}$ is a measure.
- 4.4. Show that $\mathcal{A} \subseteq \mathcal{M}$ and thus $\sigma(\mathcal{A}) \subseteq \mathcal{M}$.
- 4.5. It is possible to show (but is more difficult) that if ν is another measure on \mathcal{M} with $\nu(A) = \mu(A)$ for all $A \in \mathcal{A}$ then we actually have:

$$\nu(A) \leqslant \mu(A) \quad \text{for all } A \in \mathcal{M},$$

$$(4.3)$$

$$A \in \mathcal{M} \text{ with } \mu(A) < \infty \implies \nu(A) = \mu(A).$$
 (4.4)

Use this to show that if there exists a countable sequence $(A_n) \subset \mathcal{M}$ with $X = \bigcup_n A_n$ and $\mu(A_n) < \infty$ [i.e. if μ is σ -finite], then $\nu(A) = \nu(A)$ for all $A \in \mathcal{M}$.

4.6. Suppose \mathcal{A} is the algebra of finite unions of open intervals on \mathbb{R} and define $\mu_0(\emptyset) = 0$ and $\mu_0(A) = +\infty$ if $A \neq \emptyset$. Show that the extension of μ_0 to the Borel σ -algebra is not unique. Why does this not contradict the conclusions of the theorem?

5. Measure Theory

- 5.1. Assume that Fatou's lemma is satisfied (you can prove this directly without using the monotone convergence theorem). Prove the montone convergence theorem using Fatou's lemma.
- 5.2. Suppose $\varphi \ge 0$ is a smooth, compactly supported function with $\int_{\mathbb{R}^d} \varphi(x) dx = 1$ (integral with respect to the Lebesgue measure in \mathbb{R}^d). Define $\varphi_n(x) \coloneqq n^{\alpha} \varphi(nx)$. What choice of α gives $\int \varphi_n = 1$ for all n? Suppose that f is a continuous function. Show that $\int_{\mathbb{R}^d} f(x)\varphi_n(x) dx \to f(0)$ as $n \to \infty$.

6. Quiz

Jack.ThomasLabs.co.uk/vote

1. True or false: $C^0([a, b])$ with the norm $\int_a^b |f(x)| dx$ is complete?

A. True	B. False

2. True or false: $||f|| \coloneqq \int |f'(x)| dx$ defines a norm on $C^0([a, b])$?

A. True	B. False

3. Suppose $\|\cdot\|_1, \|\cdot\|_2$ are norms on a vector space V. Which of the following is not a norm?

A.
$$\|v\|_A \coloneqq \|v\|_1 + \|v\|_2$$

B. $\|v\|_D \coloneqq \left(\|v\|_1^{1/2} + \|v\|_2^{1/2}\right)^2$
C. $\|v\|_B \coloneqq \max_{j=1,2} \|v\|_j$
D. $\|v\|_D \coloneqq \left(\|v\|_1^{2024} + \|v\|_2^{2024}\right)^{\frac{1}{2024}}$

4. Which of the following inequalities holds for all $f \in C^0([0,1])$?

A. $ f _{C^0([0,1])} \leq f _{L^1}$	B. $ f _{C^0([0,1])} \ge f _{L^1}$
C. Neither A or B	

5. Suppose $T: V \to W$ is a linear operator between normed vector spaces. Which is the odd one out?

A. T is continuous at 0	B. $ Tu _W < \infty$ for all $u \in V$
C. T is continuous	C. $ T _{\mathcal{L}(V,W)} < \infty$

6. Take $V = \mathbb{R}^d$ which is a Hilbert space with $(u, v) \coloneqq \sum_i u_i v_i$. Let $K = \{x \in \mathbb{R}^d \colon |x| = 1\}$. What is $P_K u$?

A. Not defined because K is not a
closed linear subspace.B.
$$P_K u = \frac{u}{|u|}$$
C. $P_K u = u$ if $|u| \leq 1$ and $P_K u =$
 $\frac{u}{|u|}$ otherwiseD. Something else

7. Riesz representation theorem states

A. $\liminf \int f_n \ge \int \liminf f_n$	B. For every $u \in V$, there exists a unique $\phi \in V'$ such that $(u, v) = \phi(v)$ for all $v \in V$.
C. Every σ -finite measure defined on an alegbra \mathcal{A} can be uniquely extended to a measure on $\sigma(\mathcal{A})$.	D. For every $\phi \in V'$, there exists unique $u \in V$ such that $\phi(v) = (u, v)$ for all $v \in V$.

8. True or False: For a measure μ and measurable sets A, B, we always have $\mu(A \cap (X \setminus B)) = \mu(A) - \mu(B)$?

A. True	B. False

9. Let $f(x) \coloneqq x$ if $x \notin \mathbb{Q}$ and f(x) = 0 if $x \in \mathbb{Q}$. What is $\int_{[0,1]} f(x) dx$ (integration with respect to Lebesgue measure)?

A. Undefined: f is not measurable	B. 0
C. 1	D. $\frac{1}{2}$

10. Which way round is Fatou's lemma? (f_n sequence of non-negative measurable functions)

A. $\liminf \int f_n \leq \int \liminf f_n$	A. $\liminf \int f_n \ge \int \liminf f_n$

11. Let $f(x) \coloneqq x$ if $x \notin \mathbb{Q}$ and f(x) = 0 if $x \in \mathbb{Q}$. What is $\int_{[0,1]} f(x) dx$ (integration with respect to Lebesgue measure)?

A. Undefined: f is not measurable	B. 0
C. 1	D. $\frac{1}{2}$

12. How are you feeling about the exam?

A. Terrible	B. Not great
C. It'll be okay	D. Very confident!

7. Fourier Series

For a function $u \in L^1((-\pi,\pi);\mathbb{C})$, we define \tilde{u} to be its periodic extension to \mathbb{R} ,

$$c_n(u) \coloneqq \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} u(x) e^{-inx} \mathrm{d}x \quad \text{and} \quad S_N u \coloneqq \sum_{n=-N}^N c_n(u) e^{inx}.$$
(7.1)

Essentially because $((2\pi)^{-\frac{1}{2}}e^{inx})_{n\in\mathbb{Z}}$ forms a Hilbert basis, we have $S_N(u) \to u$ in $L^2(-\pi,\pi)$ (Theorem 6.2).

- 7.1. Theorem 6.1 states that, for $u, v \in L^1(-\pi, \pi)$, we have u = v if and only if $c_n(u) = c_n(v)$ for all n. Show that if $u \in L^1(-\pi,\pi)$ with $\sum_{n \in \mathbb{Z}} |c_n(u)| < \infty$, then $\lim_{N\to\infty} S_N(x) = u(x)$ almost everywhere. In particular, in this case, u is almost everywhere equal to a continuous function,
- 7.2. Use the proof of the Riemann-Lebesgue lemma to show that, for $\tilde{u} \in C^{k,\alpha}$ with $k \ge 0$ and $0 < \alpha \leq 1$, we have $|c_n(u)| \leq C n^{-(k+\alpha)}$. For which (k, α) does $S_N(u) \to u$ pointwise?

It turns out that using a different proof, $S_N(u) \to u$ pointwise when $\tilde{u} \in C^{0,\alpha}$. The proof of this fact uses the Dirichlet kernel – see question 7.5]

- 7.3. An alternative proof of the Reimann–Lebesgue lemma: Suppose P is a trigonmetric polynomial (P is a finite linear combination of e^{inx} for $n \in \mathbb{Z}$). Show that $c_m(P) = 0$ for all sufficiently large |m|. Use the fact that trigonometric polynomials are dense in $L^1(-\pi,\pi)$ to conclude.
- 7.5. Show that $(u \star e_n)(x) = c_n(u)e^{inx}$ and hence write down an expression for the Dirichlet kernel, D_N , satisfying $S_N u = D_N \star u$. First person to read this and let me know will win some sweets next time we meet. Show that $\int_{-\pi}^{\pi} D_N(x) dx = 1$ and simplify the expression for D_N to get $D_N(x) = A \frac{\sin(B_N x)}{\sin Cx}$ for some constants $[A, B_N, C]$
- 7.6. Show that

$$S_N u(0) - u(0) = \int_{-\pi}^{\pi} \left(u(-x) - u(0) \right) D_N(x) dx$$

=
$$\int_{-\pi}^{\pi} \left(u(-x) - u(0) \right) \left[\frac{\sin(2N\pi x)\cos\pi x}{\sin\pi x} + \cos(2N\pi x) \right] dx.$$
(7.2)

Suppose that $u \in L^1$ and u is differentiable at 0. Show that $S_N u(0) \to u(0)$. Adapt this argument to show that $S_N u(0) \to \frac{1}{2}[u(0^-) + u(0^+)]$ when u is piecewise C^1 .

7.7. Show that $u(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left[(2^{n^3} + 1)^{\frac{1}{2}}\right]$ is a continuous function with $S_N u(0) \rightarrow 0$ $\infty \text{ as } n \to \infty.$

I have moved this question here because it is harder than I thought (and also uses results for the Dirichlet kernel)!

- 7.4. (more difficult) We now show that, for a given sequence of positive numbers a_n with $(a_n) \to 0$ as $n \to \pm \infty$ such that $a_n = a_{-n}$ and $a_n \leq \frac{1}{2}(a_{n-1} + a_{n+1})$ for n > 0, there exists a function $u \in L^1(-\pi,\pi)$ such that $c_n(u) = a_n$. That is, the Fourier coefficients of an integrable function can decay arbitrarily slowly,
 - 7.4.1. First suppose that $a_n = a_{-n}$ and that $a_n \leq \frac{a_{n-1}+a_{n+1}}{2}$ for n > 0. Define $d_n := a_{n-1} a_n$. Show that d_n is decreasing, $\sum_{n=1}^{\infty} d_n$ converges and calculate its limit, and show that $nd_n \to 0$ as $n \to \infty$. 7.4.2. Hence, show that $\sum_{n=1}^{\infty} n(a_{n-1} + a_{n+1} - 2a_n)$ converges and calculate its limit.

7.4.3. Show that the *Fejer* kernel $F_n := \frac{1}{n} \sum_{m=0}^{n-1} D_m$ is given by

$$F_n(x) = \frac{1}{n} \left(\frac{\sin \frac{nx}{2}}{\sin \frac{x}{2}} \right)^2 = \sum_{|m| \le n-1} \left(1 - \frac{|m|}{n} \right) e^{imx}$$

7.4.4. Using the fact that $||F_N||_{L^1(-\pi,\pi)} = 1$ (why is this true?), show that

$$u(x) := \sum_{n=1}^{\infty} n(a_{n-1} + a_{n+1} - 2a_n)F_n(x)$$

converges absolutely in L^1 .

7.4.5. Show that

$$c_m(u) = \sum_{n \ge |m|}^{\infty} n(a_{n-1} + a_{n+1} - 2a_n) \left(1 - \frac{|m|}{n}\right) = a_{|m|}$$

In summary, for $u \in L^2$, we have convergence of the Fourier series in L^2 and so, along a subsequence, we get pointwise convergence almost everywhere. In fact, one may extend this to get pointwise almost everywhere convergence, but the proof is difficult [Carleson]. For piecewise C^1 functions, we get almost everywhere convergence with Gibbs oscillations. Finally, $\tilde{u} \in C^0$ is **not** sufficient to get pointwise convergence, but $\tilde{u} \in C^1$ is. In fact, one can show that $\|D_N\|_{L^1} \sim C \log N$ which leads to: for $\tilde{u} \in C^{0,\alpha}$,

$$|u(x) - S_N u(x)| \leq C \frac{\log N}{N^{\alpha}} \to 0 \quad \text{as } N \to \infty.$$

The smoother the (periodic extension of) function, the faster the Fourier coefficients decay. Fourier coefficients may decay arbitrarily slowly for general L^1 functions. When, u extends to an analytic function in the complex plane, the Fourier coefficients decay exponentially....

8. (Schwartz) Distributions

Recall $\Omega \subset \mathbb{R}^d$ is open. We say that $T \in \mathcal{D}'(\Omega)$ vanishes on $U \subset \Omega$ if $T(\varphi) = 0$ for all $\varphi \in \mathcal{D}(\Omega)$ with $\operatorname{supp} \varphi \subset U$. Let \mathcal{U} be the union of all open sets on which T vanishes. Then, $\operatorname{supp} T = \Omega \setminus \mathcal{U}$. Suppose that $0 \in \Omega$ and consider $\delta_0 \in \mathcal{D}'(\Omega)$.

8.1. Show that supp $\partial^{\alpha} \delta_0 = \{0\}$.

We now show a converse of this result and characterise the set of all distributions with support $\{0\}$.

- 8.2. Take $\eta \in \mathcal{D}(\Omega)$ with $\eta = 1$ in a neighbourhood of 0. Why is $T(\psi) = T(\eta\psi)$ for all $\psi \in \mathcal{D}(\Omega)$? Hence, show that T has finite order $p \ge 0$.
- 8.3. Use Taylor's theorem to write $\varphi \in D(\Omega)$ as $\varphi(x) = \sum_{|\alpha| \leq p} \frac{\partial^{\alpha} \varphi(0)}{\alpha!} x^{\alpha} + \theta(x)$ with $\partial^{\alpha} \theta(0) = 0$ for all $|\alpha| \leq p$. Hence, show that

$$T(\varphi) = \sum_{|\alpha| \leq p} \frac{\partial^{\alpha} \varphi(0)}{\alpha!} T(x^{\alpha}) + T(\eta \theta).$$

- 8.4. Explain why $|T(\eta\theta)| \leq C |\operatorname{supp} \eta|$,
- 8.5. In particular, since η is arbitrary (as long as $\eta = 1$ in a neighbourhood of 0), show that

$$T = \sum_{|\alpha| \le p} c_{\alpha} \partial^{\alpha} \delta_0, \quad \text{where} \quad c_{\alpha} \coloneqq \frac{(-1)^{|\alpha|}}{\alpha!} T(\eta x^{\alpha}). \tag{8.1}$$

8.6. In general, if supp $T = \{x_n\}_{n=1}^N$, then T has finite order $p \ge 0$ and is a finite linear combination of $\partial^{\alpha} \delta_{x_n}$ for $|\alpha| \le p$ and $1 \le n \le N$.

9. Quiz

Jack.ThomasLabs.co.uk/vote

1. What is the order of $\delta_0 + \delta'_0 \in D'(\mathbb{R})$?

A. not defined	B. 0
C. 1	D. 2

2. What is the derivative of $T_{|x|} \in D'(\mathbb{R})$?

A. not defined	B. 1
C. T_{sgn} , $\text{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases}$	D. something else

3. Suppose $T \in D'(\mathbb{R})$ and $f \in C^{\infty}$. What is (fT)'?

A. not defined	B. <i>fT</i> ′
C. <i>f</i> ' <i>T</i>	D. $fT' + f'T$

4. What is the derivative of $T_{(x+1)\operatorname{sgn} x}$?

A. not defined	B. $x + \delta$
C. $2\delta_0 + \operatorname{sgn}(x)$	D. something else

5. Is $\sum_{n=0}^{\infty} \delta_0^{(n)}$ a distribution on $D(\mathbb{R})$?

A. Yes	B. No

6. Is $\sum_{n=1}^{\infty} \delta_{\frac{1}{n}}$ a distribution on $D(\mathbb{R})$?

A. Yes	B. No

7. Is $\sum_{n=1}^{\infty} \delta_{\frac{1}{n}}$ a distribution on $D(\mathbb{R} \setminus \{0\})$?

A. Yes	B. No

8. Is $\sum_{n=1}^{\infty} (n!)^2 \delta_n$ a distribution on $D(\mathbb{R})$?

A. Yes	B. No

9. Is there distributions of finite order but with $\sup_{K} C_{K} = \infty$?

A. Yes	B. No

10. Is there distributions with $\sup_K p_K = \infty$ but with $\sup_K C_K < \infty$?

A. Yes	B. No

11. Is there distributions with $\sup_{K} p_{K} = \infty$ and with $\sup_{K} C_{K} = \infty$?

A. Yes	B. No