This is a collection of examples that may be of use to students taking first year core maths modules for nonmaths students at Warwick. These are examples that I made up for supervisions so may not be fully correct and may be way too easy or way too difficult - if you have any comments or corrections please send them to J.Thomas.1@warwick.ac.uk. I have marked with (!) questions that are probably quite difficult for the particular module.

Linear Algebra

Example 1: Change of Basis

Let us consider the linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$
T((x, y, z)) = (2x, y - z, z)
$$

Let $E = \{e_1, e_2, e_3\}$ denote the standard basis of \mathbb{R}^3 .

(a) Write down the matrix of T with respect to E. We shall denote this by $[T]_E^E$.

Let

$$
F = \left\{ f_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, f_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, f_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}. \right\}
$$

- (b) Check that F is a basis of \mathbb{R}^3 .
- (c) Write the matrix that represents T with respect to the basis F .

Another way of looking at this is the following: If we wish to express T with respect to F , we are interested in the mapping $T: (\mathbb{R}^3, F) \to (\mathbb{R}^3, F)$. We can see that this is the composition of the following linear maps:

> id : $(\mathbb{R}^3, F) \to (\mathbb{R}^3, E)$ with associated matrix $[\mathrm{id}]_E^F$, $T: (\mathbb{R}^3, E) \to (\mathbb{R}^3, E)$ with associated matrix $[T]_E^E$ and id : $(\mathbb{R}^3, E) \to (\mathbb{R}^3, F)$ with associated matrix $[\text{id}]_F^E$.

Therefore, we can see that the map $T : (\mathbb{R}^3, F) \to (\mathbb{R}^3, F)$ has the following associated matrix

 $[T]_F^F = [\mathrm{id}]_F^E[T]_E^E[\mathrm{id}]_E^F$

This is simply because the composition of linear maps corresponds to matrix multiplication of the associated matrices. Note that the matrices $[\text{id}]_F^E$ and $[\text{id}]_E^F$ are change of basis matrices.

(d) Show that

$$
[\mathrm{id}]_F^E = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 0 & 1 \\ -1/2 & 1 & -3/2 \end{pmatrix} \text{ and } [\mathrm{id}]_E^F = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}
$$

(e) Hence show that

$$
[\mathrm{id}]_F^E[T]_E^E[\mathrm{id}]_E^F = \begin{pmatrix} 2 & -1/2 & 0 \\ 0 & 1 & 0 \\ -1 & -1/2 & 1 \end{pmatrix}
$$

- (f) Compare (c) and (e)
- (g) Use your change of basis matrices to write $v = e_1 + 2e_2 + 3e_3$ in terms of the basis F and $w = f_1 + 2f_2 + 3f_3$ in terms of the basis E.
- (h) Check (g) by solving the equations $v = \alpha f_1 + \beta f_2 + \gamma f_3$ and $w = ae_1 + be_2 + ce_3$ for the coefficients $\alpha, \beta, \gamma, a, b, c.$

(i) Use what we have done to calculate the matrix representation of T with respect to E in the domain and F in the range. That is, find the matrix representing the linear map $T : (\mathbb{R}^3, E) \to (\mathbb{R}^3, F)$. Do the same for the map $T: (\mathbb{R}^3, F) \to (\mathbb{R}^3, E)$.

Question 2: Solving a Linear System of Equations

Let us consider the finite sequence $a_1 = 6, a_2 = 17, a_3 = 34$. You may be familiar with finding the nth term of this sequence but you may not be familiar with the following method:

- (a) What are the possible degrees n such that there exists a polynomial, p, of degree n such that $p(n) = a_n$ for $n = 1, 2, 3$?
- (b) Set up a linear system of equations for the coefficients of a polynomial p of least degree as in (a).
- (c) Solve the linear system and thus find p.
- (d) Check your solution by evaluating $p(n)$ for $n = 1, 2, 3$.

Question 3: Matrix Diagonalisation - An Application

Let us consider the Fibonacci sequence defined by $F_0 = 0, F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$ for all $n \ge 1$. You may know that the nth term in this sequence is given in terms of the golden ratio - follow the below steps to see a proof of this fact!

(a) Prove by induction that for $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, we have

$$
A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}.
$$

- (b) Find the eigenvalues λ_1, λ_2 and corresponding eigenvectors v_1, v_2 of A.
- (c) Hence, find an invertible matirx S such that $A = S \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ $0 \lambda_2$ $\Big) S^{-1}.$
- (d) Notice that $A^n = S \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda \end{pmatrix}$ $0 \lambda_2$ $\int_0^n S^{-1}$ and hence show that

$$
F_n = \frac{1}{\sqrt{5}} \left(\phi^n - \psi^n \right)
$$

where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio and $\psi = \frac{1-\sqrt{5}}{2}$.

(extra) Try to use the matrix A to show that if n divides m then F_n divides F_m .