Linear Algebra: Vector Spaces	Linear Algebra: Vector Spaces
True or False? $v_1, \ldots, v_n \in V$ are linearly dependent if and only if there exists $j \in \{1, \ldots, n\}$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ such that $v_j = \sum_{k: k \neq j} \alpha_k v_k.$	True or False? The vectors $(1, 1, 1), (-1, 0, 1), (0, 1, 0) \in \mathbb{R}^3$ form a basis of \mathbb{R}^3 (here, \mathbb{R}^3 is a vector space over \mathbb{R})
Linear Algebra: Vector Spaces	Linear Algebra: Vector Spaces
True or False? The vectors $v_1 = (1, 2, 3), v_2 = (1, 3, 2), v_3 = (2, 1, 3)$ $v_4 = (2, 3, 1), v_5 = (3, 1, 2), v_6 = (3, 2, 1)$ are linearly independent in \mathbb{R}^3 .	True or False? For $n \in \mathbb{N}$, any set of $n + 1$ vectors in \mathbb{R}^n is not linearly independent.
Linear Algebra: Vector Spaces	Linear Algebra: Vector Spaces
True or False? For $n \in \mathbb{N}$, any set of $n + 1$ vectors in \mathbb{R}^n spans.	True or False? V is a vector space. If the set $v_1, \ldots, v_n \in V$ is linearly independent but does not span V , then there exist a $v \in V$ such that v_1, \ldots, v_n, v are linearly independent.
Linear Algebra: Vector Spaces	Linear Algebra: Vector Spaces
True or False? $1, 1 - x, 1 - x^2, \dots, 1 - x^n \in \mathbb{R}[x]_{\leq n}$ form a basis.	True or False? \mathbb{C}^n is a vector space over \mathbb{R} of dimension $2n$ (there exists a basis of $(\mathbb{C}^n, \mathbb{R})$ of $2n$ vectors).
Linear Algebra: Vector Spaces	Linear Algebra: Vector Spaces
True or False? $\{(1+x)^k \colon k = 0, \dots, n\} \subset \mathbb{R}[x]_{\leq n}$ forms a basis of $\mathbb{R}[x]_{\leq n}$.	True or False? For any finite set A of vectors spanning a vector space V , there exists a subset $\{v_1, \ldots, v_n\} \subset A$ which is a basis of V .

$\begin{array}{c} \mbox{True.}\\ \mbox{For an arbitrary } (x,y,z) \in \mathbb{R}^3, \mbox{we may solve}\\ (x,y,z) = \alpha(1,1,1) + \beta(-1,0,1) + \gamma(0,1,0) \mbox{ which}\\ \mbox{gives } \alpha = \frac{1}{2}(x+z), \mbox{$\beta = \frac{1}{2}(x-z)$ and $\gamma = y - \frac{1}{2}(x+z)$.}\\ \mbox{This shows that the vectors span the space.}\\ \mbox{Now, we need to explain why the vectors are linearly}\\ \mbox{independent. Either we can write}\\ \mbox{$\alpha(1,1,1) + \beta(-1,0,1) + \gamma(0,1,0) = 0$ and show that}\\ \mbox{$\alpha = \beta = \gamma = 0$ or we can say that any set of n vectors that}\\ \mbox{span an n dimensional vector space must also be linearly}\\ \mbox{independent (and hence a basis)}. \end{array}$	True. The vectors are not linearly independent (i.e. are linearly dependent) if and only if there exists $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ which are not all zero such that $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0.$ Letting j be such that $\alpha_j \neq 0$, we obtain $v_j = -\frac{1}{\alpha_j} \sum_{k: \ k \neq j} \alpha_k v_k$
True. Seen in lectures a more general result	. False. \mathbb{R}^3 has dimension 3 and so any set of more than 3 vectors cannot be linearly independent
True. Since the set does not span V, there exists a $v \in V$ that cannot be written as a linear combination of v_1, \ldots, v_n . Now, if $\alpha_1 v_v + \ldots \alpha_n v_n + \alpha v = 0$ then $\alpha = 0$ (if not $v = -\frac{1}{\alpha}(\alpha_1 v_v + \ldots \alpha_n v_n)$ contradicting the fact v is not in the span of the v_i) and so $\alpha_1 v_v + \ldots \alpha_n v_n = 0$ which implies all $\alpha_i = 0$ by linear independence of the v_i . This means v_1, \ldots, v_n, v is linearly independent.	False. e.g. take $v \in V$, the set $v, 2v, 3v, \ldots, (n + 1)v$ has the same span as v (which is the whole space if and only if $n = 1$).
True! We let e_1, \ldots, e_n is the standard basis of \mathbb{R}^n . We claim that $E = \{e_1, \ldots, e_n, ie_1, \ldots, ie_n\}$ is a basis of $(\mathbb{C}^n, \mathbb{R})$. For $z \in \mathbb{C}^n$, we can find real vectors $x, y \in \mathbb{R}^n$ such that $z = x + iy$ and since e_1, \ldots, e_n is a basis of \mathbb{R}^n , we can conclude that E spans $(\mathbb{C}^n, \mathbb{R})$. Similarly, supposing that $\alpha_1 e_1 + \cdots + \alpha_n e_n + \beta_1 ie_1 + \cdots + \alpha_n ie_n = 0$ for $\alpha_j, \beta_j \in \mathbb{R}$. $0 \in \mathbb{C}$ is the point where both real and imaginary components are zero. Therefore, we have $\alpha_1 e_1 + \cdots + \alpha_n e_n = 0$ and $\beta_1 e_1 + \cdots + \beta_n e_n = 0$ thus, by the linear independence of the standard vectors, $\alpha_j = \beta_j = 0$ for all j . That is, E is lin. independent over \mathbb{R} .	True. A general polynomial can be written as $p(x) = \alpha_n x^n + \dots + \alpha_1 x + \alpha_0$ which is also $p(x) = -\alpha_n (1-x^n) - \dots - \alpha_1 (1-x) + \alpha_0 + \alpha_1 + \dots + \alpha_n$ and so the set of polynomials span the space. They are linearly independent because there is <i>n</i> spanning vectors in an <i>n</i> dimensional space.
True. We shift the set A to get a set of linearly independent vectors which also span by the assumption that A spans .	$\begin{array}{c} \text{True.}\\ \text{Let } v_k = (1+x)^k \text{ for } k = 0, \ldots, n. \ \mathbb{R}[x]_{\leq n} \text{ is of dimension}\\ n+1 \text{ so we only need to show that } v_0, \ldots, v_n \text{ spans. We}\\ \text{show this by induction on } n. \text{ For } n = 0, \ \mathbb{R}[x]_{\leq 0} = \mathbb{R} \text{ and } 1\\ \text{spans the space. Suppose that } v_0, \ldots, v_{n-1} \text{ spans } \mathbb{R}[x]_{\leq n-1}.\\ \text{Now for } p(x) = \alpha_n x^n + \cdots + \alpha_1 x + \alpha_0 \in \mathbb{R}[x]_{\leq n}, \text{ we}\\ \text{can write } p(x) = \alpha_n (1+x)^n + q(x) \text{ where } q(x) \text{ is a}\\ \text{polynomial of degree at most } n-1 \text{ and so may be written as a}\\ \text{linear combination of } v_0, \ldots, v_{n-1} \text{ by induction .} \end{array}$

Linear Algebra: Vector Spaces	Linear Algebra: Vector Spaces
True or False? Let V be a finite dimensional vector space. For any set A of linearly independent vectors, there exists a superset $\{v_1, \ldots, v_n\} \supset A$ which is a basis of V.	True or False? Let V be a finite dimensional vector space over ℝ. There exists infinitely many sets of linearly independent vectors.
Linear Algebra: Vector Spaces	
True or False? If $v_1, \ldots, v_n \in V$ forms a basis, then for any $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ the set of vectors $\alpha_1 v_1, \ldots, \alpha_n v_n$ forms a basis.	

L

